
Sublinear-Round Byzantine Agreement under
Corrupt Majority

T-H. Hubert Chan1??, Rafael Pass2, and Elaine Shi3

1 The University of Hong Kong
2 Cornell Tech

3 Cornell University

Abstract. Although Byzantine Agreement (BA) has been studied for
three decades, perhaps somewhat surprisingly, there still exist significant
gaps in our understanding regarding its round complexity. A long-standing
open question is the following: can we achieve BA with sublinear round
complexity under corrupt majority? Due to the beautiful works by Garay
et al. (FOCS’07) and Fitzi and Nielsen (DISC’09), we have partial and
affirmative answers to this question albeit for the narrow regime f =
n/2 + o(n) where f is the number of corrupt nodes and n is the total
number of nodes. So far, no positive result is known about the setting
f > 0.51n even for static corruption!
In this paper, we make progress along this somewhat stagnant front. We
show that there exists a corrupt-majority BA protocol that terminates in
O( 1

ε
log 1

δ
) rounds in the worst case, satisfies consistency with probability

at least 1−δ, and tolerates (1− ε) fraction of corrupt nodes. Our protocol
secures against an adversary that can corrupt nodes adaptively during
the protocol execution but cannot perform “after-the-fact” removal of
honest messages that have already been sent prior to corruption. Our
upper bound is optimal up to a logarithmic factor in light of the elegant
Ω(1/ε) lower bound by Garay et al. (FOCS’07).

Keywords: Byzantine agreement, sublinear round complexity, corrupt ma-
jority

1 Introduction

A central abstraction in distributed systems and cryptography is Byzantine
Agreement (BA), where a designated sender aims to communicate a bit to
multiple receivers. We require two security properties, consistency and validity.
Consistency requires that all honest nodes output the same bit; and validity
requires that they all output the sender’s bit if the sender is honest. Since the
beginning of distributed computing, a foundational and important question is
the round complexity of Byzantine Agreement. A line of elegant works have
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investigated this question. The celebrated work of Dolev and Strong [11] showed
that there exists an (f + 1)-round BA protocol that tolerates up to f Byzantine
corruptions for any f < n. Further, they showed that f + 1 rounds is optimal for
deterministic protocols. Subsequently, it was shown that randomized protocols
can overcome this f + 1 round complexity lower bound: specifically, a sequence
of works [2, 12, 21], beginning with Feldman and Micali [12]’s ingenious work,
showed the existence of expected constant-round protocols in the honest-majority
setting.

Now, an important question is whether we can achieve similar results for
the corrupt majority setting, i.e., can randomized protocols help us overcome the
(f + 1)-round complexity lower bound when the majority of nodes can be corrupt?

Perhaps somewhat surprisingly, despite decades of research on Byzantine
Agreement, our understanding of this fundamental question remains limited. To
the best of our knowledge, the only known results prior to our work are restricted
to very narrow parameter regimes, that is, when the number of corrupt nodes
is just a little more than 1/2. Specifically, Fitzi and Nielsen [13] showed that
if the number of corrupt nodes is n/2 + k, then an O(k)-round (randomized)
BA protocol exists assuming the existence of a PKI and secure signatures (and
their work improves the earlier result by Garay et al. [14]). In other words, so
far we only know how to construct sublinear-round BA protocols in the corrupt
majority setting when the number of corruptions is n/2 + o(n).

1.1 Our Results and Contributions

We make progress along this somewhat stagnant front. We show a positive
result in the corrupt majority setting assuming the existence of a public-key
infrastructure and standard cryptographic assumptions. For any 0 < ε, δ < 1,
suppose that the adversary corrupts at most (1 − ε)n nodes and runs in time
polynomial in some security parameter κ, then we can construct a BA protocol
that reaches agreement in O(log(1/δ)/ε) number of rounds with probability
1− δ − negl(κ) where negl(κ) is a negligibly small function in κ corresponding to
the probability that the cryptographic primitives employed are broken.

Remark 1. Typically, one requires that the protocol’s (statistical) failure proba-
bility δ be a negligible function in some statistical security parameter4 λ: in this
typical case, the reader can think of log(1/δ) as being polylogarithmic in λ (and
independent of n).

Our result is almost optimal in light of an elegant round-complexity lower
bound for randomized Byzantine Agreement (BA) by Garay et al. [14]. Specifically,
they show that any randomized BA protocol (allowing up to constant failure
probability) must consume Ω(n/(n− f)) rounds — note that for f = (1− ε)n,
the lower bound becomes Ω(1/ε). In comparison, our upper bound is optimal up
to a log(1/δ) factor.

4 Here we use a different parameter λ to distinguish from the security parameter κ
that is related to the strength of the cryptographic primitives employed.



Note that our result allows for ε to be a function in n. For example, for
ε = O(1), we give an O(log(1/δ))-round protocol; and for ε = O(1/

√
n), we give

an O(
√
n · log(1/δ))-round protocol. Finally, for any f ≤ n − ω(log(1/δ)), we

achieve sublinear (in n) number of rounds which is asymptotically better than
the celebrated Dolev-Strong protocol [11].

Theorem 1 (Nearly round-optimal protocols for corrupt majority). As-
sume the existence of a public-key infrastructure (PKI) and standard cryptographic
assumptions. For parameters ε, δ ∈ (0, 1) which are allowed to be functions in n,
there exists a protocol that terminates in O(log(1/δ)/ε) number of rounds and
achieves BA with 1− δ − negl(κ) probability in the presence of an adversary that
adaptively corrupts at most (1− ε)n nodes and runs in time polynomial in κ.

We stress that previously, except for the narrow parameter regime f =
0.5n + o(n), no sublinear-round protocol is known for the corrupt majority
setting, not even under static corruption and making any conceivable assumption
including very strong ones such as random oracles and the ability of honest nodes
to erase secrets from memory. Importantly, even under static corruption, the
standard random committee election technique that is commonly adopted for an
honest-majority setting [1, 3, 19, 23, 24] fails for corrupt majority for reasons we
will explain later in this section as well as Section 3.1! Our protocol works in a
model where the adversary may adaptively corrupt nodes in the middle of the
execution, as long as the adversary cannot retroactively erase messages that were
already sent before the corruption took place [1].

Finally, to aid understanding of Theorem 1, we remark that the existence of
a public-key infrastructure is long known to be necessary for achieving BA under
corrupt majority — without any setup assumptions, BA is not possible under
1/3 or more corruptions [25].

Technical highlights. In an honest majority setting assuming static corruption,
a standard technique [1,3,19,23,24] is to elect a random, polylogarithmically sized
committee to run a round-inefficient BA protocol; and non-committee members
will decide on a value that is vouched for by the majority of the committee. It
is tempting to think that the same technique will work for a corrupt majority
setting but this intuition turns out to be wrong because majority voting no longer
works here.

Our approach adopts a two-step recipe. First, we describe a new technique that
combines the random committee election idea with the well-known Dolev-Strong
protocol [11], but in a non-blackbox manner to allow non-committee members
who do not have voting power to keep committee members informed of their
latest local state during the consensus. With this technique, we can construct an
O(log(1/δ)/ε)-round BA protocol secure against (1− ε)n static corruptions. Even
this static-corruption result is new and advances the state-of-the-art regarding
the round complexity of BA under corrupt majority.

Next, we describe a technique to upgrade our protocol to defend against even
an adaptive adversary. The challenge here is that if the random committee is



elected a priori, an adaptive adversary can simply corrupt the entire committee.
To defend against such an adversary, we employ adaptively secure Verifiable
Random Functions (VRFs) to secretly elect a committee, such that the committee
is not revealed until they need to cast votes in the protocol. Not only so, an
important technical subtlety is that the committee election must be bit-specific,
i.e., the committee that is allowed to vote on 0 is elected independently from
the committee that is allowed to vote on 1 — otherwise, upon observing some
committee members voting for 0, the adaptive adversary can immediately corrupt
these nodes and make them vote for 1 too (and it turns out that such an attack
can break both consistency and validity). Bit-specific committee election is a new
technique that was first described in the very recent works by Abraham et al. [1]
(PODC’19) and Chan et al. [5] (Eurocrypt’19) where they focus on constructing
adaptively secure, bandwidth-efficient consensus protocols. Interestingly, while
existing works [1,5] rely on this technique to improve the bandwidth consumption
of adaptively secure BA under honest majority, we are the first to use these
techniques to achieve a non-trivial round complexity result for corrupt majority.

Last but not the least, our techniques for achieving these results are in fact
conceptually simpler than those of Fitzi and Nielsen [13] (which is an improvement
of Garay et al. [14]); and moreover, our results apply to a broad parameter regime
whereas the prior works [13, 14] only achieve sublinear-round for the narrow
regime f < n/2 + o(n). We view the conceptual simplicity as an advantage of
our approach.

Open questions. Although our work advances the state-of-the-art in a funda-
mental area that has been somewhat stagnant, we still have not completely closed
the gap in our understanding. Some interesting open questions remain.

– For example, can we achieve sublinear-round BA under corrupt majority
with a strongly adaptive adversary who is even allowed to remove messages
sent by an honest node in round r by adaptively corrupting the node in the
same round? Many earlier works in the BA literature in fact consider such a
strongly adaptive adversary [4, 11,16,21,23].

– Another interesting question is whether we can weaken the setup assumptions
needed to get such a result. Specifically, observe that the setup assumptions
we need are slightly stronger than that of Dolev and Strong [11].

– For honest majority, expected constant round BA is known [1, 2, 12, 21].
The protocols in this paper are not expected constant round. Therefore,
an interesting direction is whether we can have expected constant round
protocols in the corrupt majority setting — note that due to the lower bound
by Garay et al. [14], this can only be possible if constant fraction of the nodes
are corrupt.

We leave these directions for future work.

Additional related work. Several other works [8, 20] proved lower bounds on
the worst-case round complexity of randomized BA; and the online full version
of this paper [6] presented complete proofs of these lower bounds. Note that



these lower bounds are incomparable to Garay et al.’s lower bound [14]. Cohen
et al. [10] prove lower bounds on the round complexity of randomized Byzantine
agreement (BA) protocols, bounding the halting probability of such protocols
after one and two rounds.

A line of works in the literature [9, 15,18] have focused on a simulation-based
notion of adaptive security for Byzantine Broadcast, where the concern is that
the adversary should not be able to observe what the sender wants to broadcast,
and then adaptively corrupt the sender to flip the bit. This notion is stronger
than what we consider in this paper, but such a strong notion was only achieved
earlier by making stronger assumptions than in our paper [15], i.e., the “atomic
message” model: after adaptively corrupting a node i, the adversary not only is
unable to erase a message i already sent in this round, but also must wait for at
least one maximum network delay before the corrupt i can start sending corrupt
messages.

2 Preliminaries

2.1 Protocol Execution Model

We assume a standard protocol execution model with n nodes indexed with
[n] := {1, 2, . . . , n}. An external party called the environment and denoted Z
provides inputs to honest nodes and receives outputs from the honest nodes. An
adversary denoted A controls a subset of the nodes which are said to be corrupt;
all other nodes are said to be honest. All corrupt nodes are under the control of A,
i.e., the messages they receive are forwarded to A, and A controls what messages
they will send once they become corrupt. The adversary A and the environment
Z are allowed to freely exchange messages any time during the execution. To
capture protocols that employ cryptography, we assume that all nodes as well as
A and Z are Interactive Turing Machines that run in time polynomial in some
security parameter κ; further, we assume that κ is known to all nodes as well as
A and Z.

We assume a standard synchronous network model. Whenever honest nodes
send a message, the message is delivered to honest recipients at the beginning of
the next round.

Adaptivity of the adversary. We shall assume an adaptive adversary that
can corrupt nodes in the middle of the execution. The adversary can observe all
currently honest nodes’ messages in round r before deciding which subset of these
nodes to corrupt in round r. Suppose an honest node P sends a message in some
round r and then becomes corrupt in the same round — in this case we assume
that the adversary cannot perform “after-the-fact” removal and a-posteriori delete
the message that was sent by P in round r before it became corrupt. However,
since P is corrupt, the adversary may now inject additional round-r messages on
behalf of P .



For ease of understanding, in our exposition we will first describe a warmup
protocol secure against a static adversary: such an adversary is required to declare
the set of corrupt nodes before the start of the execution.

2.2 Byzantine Agreement

In this section we formally define Byzantine Agreement. Recall that there are n
nodes indexed by {0, 1, 2, . . . , n− 1}. Without loss of generality, we shall assume
that node 0 is the designated sender.

Syntax. Before the protocol starts, the sender receives an input b ∈ {0, 1} from
the environment Z. At the end of the protocol, every node i (including the sender)
outputs a bit bi to the environment Z.

Security definition. We say that a protocol (satisfying the above syntax)
achieves BA with probability p with respect to (A,Z), iff with probability at
least p over the choice of the randomized execution, the following properties are
satisfied:

– Consistency. If an honest node outputs bi and another honest node outputs
bj to Z, then it must hold that bi = bj .

– Validity. If the designated sender remains honest throughout and its input is
b, then any honest node’s output to Z must be b.

3 Technical Roadmap: Nearly Round-Optimal BA for
Corrupt Majority

In this section, we give a slightly informal presentation of our construction. Later
on in Sections 4 and 5, we present a formal description along with formal proofs.

3.1 Warmup: Any Constant Fraction of Static Corruption

For simplicity, let us first focus on the simpler case when the adversary is
constrained to making static corruptions. Let ε denote the fraction of honest
nodes, where ε can potentially be a function of n; however, as a warmup, we
assume ε to be some arbitrarily small constant in this section. We will later extend
our approach to more general choices of ε and to the case of adaptive corruptions.
We stress, however, that except for the narrow parameter regimes in Garay et
al.’s result [14], previously it was unknown how to achieve sublinear-round BA
in the corrupt majority setting even assuming static corruptions. We use δ > 0
to denote the failure probability (for consistency).

Flawed strawman approach. One tempting but flawed approach is to ran-
domly elect a small committee of log(1/δ) nodes — for the time being, imagine
that a random leader election oracle exists — and have the committee run a



corrupt-majority BA protocol such as Dolev-Strong [11]. For the special case
ε = Θ(1) and static corruption, it is not hard to show that except with O(δ)
probability, the committee consists of at least 1 honest node. Thus all honest
nodes within the small committee can reach agreement on a bit b∗ in log(1/δ)
number of rounds. Unfortunately, there does not seem to be any straightforward
way to securely convey this bit to the non-committee nodes (note that the com-
mon approach of taking a majority vote among the committee fails to work in
the corrupt majority setting).

To resolve this challenge, our insight is to combine the random committee
election idea and the Dolev-Strong protocol in a non-blackbox manner.

Background: the Dolev-Strong protocol. We start by reviewing the classical
Dolev-Strong protocol [11] that achieves linear round complexity and tolerates
any number of corruptions — henceforth the term “multicast” means “send to
everyone”5:

– Every node i maintains an Extractedi set that is initialized to be empty. In
round 0, the sender signs its input bit b, and multicasts b and the signature.

– For each round r = 1 . . . n: for each bit b ∈ {0, 1}, if node i has observed valid
signatures on b from at least r distinct nodes including the designated sender
and b /∈ Extractedi: compute a signature on b; multicast b and all signatures
it has observed on b (including its own); include b in Extractedi.

– At the end of the protocol, each node i outputs the bit contained in Extractedi
if |Extractedi| = 1; else it outputs a canonical bit 0.

This protocol retains consistency, if the number K of rounds is strictly larger
than the number f of (eventually) corrupt nodes. First, if an honest node i first
adds a bit b to its Extractedi set in any round r < K, then by the end of round
r + 1, b must be in every honest node’s Extracted set. Further, if a honest node i
first adds a bit b to its Extractedi set in the last round K (which is at least f + 1),
then at least one out of the K ≥ f + 1 signatures it has observed in round K
must be from an honest node — it holds that this honest node must have added
b to its Extracted set in some round r < K before the last round; and thus by
the end of the last round K, every honest node will have b in its Extracted set.

Achieving agreement for non-committee members. Recall that the prob-
lem with the näıve committee election approach is how to convey the committee’s
decision to the non-committee members. To this end we will combine the com-
mittee election idea with Dolev and Strong’s protocol in a non-blackbox manner.
Suppose that a leader election oracle exists that helps us elect a committee of
log(1/δ) nodes after the adversary chooses the corrupt nodes. As argued earlier,
except with probability O(δ), there is at least one honest node in the committee.

5 Since in many consensus works the word broadcast is used to mean “Byzantine
Agreement”, we use “multicast” rather than “broadcast” to avoid ambiguity.



Henceforth we assume that only the committee members are authorized signers
and signatures from any non-committee node will be ignored. Our key insight is
to divide each round r of the Dolev-Strong protocol into two mini-rounds:

– Every node i maintains an Extractedi set that is initialized to be empty. In
round 0, the sender signs its input bit b, and multicasts b and the signature.

– For each round r = 1, 2, . . . , S + 1 where S = log(1/δ) denotes the committee
size,
1. In the first mini-round, if any node i receives a bit b /∈ Extractedi with r

signatures from distinct signers, it adds b to Extracted and multicasts b
tagged with all signatures observed so far for b.

2. In the second mini-round, only the committee members perform the
actions above and moreover a committee member always appends its own
signature for b when multicasting b (and all other seen signatures on b).

– Each node i outputs the bit contained in Extractedi if |Extractedi| = 1; else it
outputs a canonical bit 0.

Note that this approach guarantees that if any honest node newly adds a bit
b to its Extracted set in round r, then all committee nodes must have signed it
by the end of round r (if not earlier) and multicast the corresponding signature.
Thus in the first mini-round of round r + 1, every honest node will have added b
to its Extracted set. At this moment, it is not difficult to see that as long as one
committee member is honest, if the above protocol is executed for at least f + 1
rounds then we can argue consistency using a similar approach as Dolev-Strong.

3.2 Achieving Adaptive Security and Removing the Leader Election
Oracle

The above protocol enables the committee to securely convey its decision to non-
committee nodes; unfortunately, the protocol does not defend against adaptive
corruptions. Specifically, since the elected committee is small relative to n, an
adaptive adversary can simply corrupt all committee members after they are
elected. We now present an approach for achieving adaptive security borrowing
the “bit-specific committee election” idea that was previously employed in the
construction of small-bandwidth honest-majority BA protocols by Abraham et
al. [1] and Chan et al. [5]. As a by-product we will have instantiated the leader
election oracle that was needed earlier.

Our idea is to tie the committee election to each individual bit, i.e., there is a
separate committee that are allowed to vote on 0 and 1 respectively (henceforth
called the 0-committee and the 1-committee respectively), and the designated
sender is in both committees. Specifically, Abraham et al. [1] and Chan et al. [5]
describe how to realize bit-specific committee election using a suitable Verifiable
Random Function (VRF) with adaptive security. Take b = 0 as an example. For
a node i to determine if he is on the 0-committee, he checks the following:

let (ρ, π) := VRFski(0), and check if ρ < Dp



Here ski is his private key, Dp is an appropriate difficulty parameter that deter-
mines the success probability (denoted p) of each election attempt, and π is a
proof generated by the VRF which will be used below for verification. Concretely,
the probability p is chosen such that the expected number of nodes elected into
either the 0-committee or 1-committee is log(1/δ). To convince others that i
is indeed an eligible member of the 0-committee, i reveals both ρ and π, and
everyone can now verify, using i’s public key, that indeed ρ is the correct outcome
of the VRF.

We now explain how to use bit-specific committee election to achieve adaptive
security. Suppose a 0-committee member i becomes immediately corrupt after
signing 0 and multicasting signatures on 0. However, corrupting node i does not
necessarily help voting for the bit 1 — in particular, since the two committees
are independently selected, node i is only as good as any other node in terms of
its likelihood of being elected into the 1-committee. Thus, corrupting node i is
only as good as corrupting any other node at this point. In the proof of Lemma 2,
we will formalize the above intuition.

Putting it altogether. We say that a tuple (b, i, π) is a valid vote on b iff either
1) i = 1 is the designated sender and π is a valid signature on b from i; or 2) i 6= 1
and π is a valid VRF proof proving i to be in the b-committee. The protocol is
described below.

– Every node i initializes Extractedi := ∅. The sender signs its input bit b and
multicasts b as well as the signature.

– For round r = 1, . . . , log(1/δ), every node i performs the following:

1. First mini-round: for every b /∈ Extractedi such that the node has observed
at least r votes from distinct nodes including the sender: add b to Extractedi;
multicast b and all observed votes on b.

2. Second mini-round: for every b /∈ Extractedi, if node i belongs to the
b-committee and moreover the node has observed at least r votes from
distinct nodes including the sender: add b to Extractedi; compute a new
vote on b; multicast b and all observed votes on b (including the newly
created one).

– Every node i outputs the bit contained in Extractedi if |Extractedi| = 1; else
output a canonical bit 0.

3.3 Organization of the Subsequent Formal Sections

The subsequent sections formalize the description contained in this section.
Specifically, in Section 4, we describe an idealized version of the protocol assuming
an ideal eligibility election oracle, and we conduct stochastic analysis of the
idealized protocol for more general choices of ε. Next, in Section 5, we describe how
to replace the idealized leader eligibility election oracle with suitable adaptively
secure cryptographic primitives, and yet retain the security properties of the
idealized protocol.



4 Formal Description of Fmine-Hybrid Protocol

In the sections to follow, we will formally present our upper bound for the corrupt
majority case. We will first describe our protocol assuming an idealized oracle
called Fmine that is in charge of random eligibility election 6— this approach
allows us to “abstract away” the cryptography and focus on analyzing the
stochastic properties of the protocol first. Later in Section 5, we will show how
to leverage standard techniques to remove the Fmine assumption and instantiate
it with appropriate, adaptively secure cryptography.

Henceforth, to make our description and proofs more precise, we define some
additional terminology. At any time in the protocol, nodes that remain honest so
far are referred to as so-far honest nodes; nodes that remain honest till the end
of the protocol are referred to as forever honest nodes.

4.1 Ideal Functionality Fmine for Random Eligibility Determination

The idealized oracle Fmine provides the following functionality. A node i can query
Fmine to check if it is an eligible member of the b-committee where b ∈ {0, 1}. Upon
receiving such a query, Fmine flips a random coin (with appropriate probability)
to determine the answer; further Fmine stores this answer and returns it to any
node that queries it henceforth.

More formally, the Fmine ideal functionality has two activation points:

– Whenever a node i calls mine(b) for the first time where b ∈ {0, 1}, Fmine flips
a random coin (parametrized with an appropriate probability p) to decide if i
is a committee member for b.
Henceforth if a node i calls Fmine.mine(b), we also say that i makes a mining
attempt for the bit b.

– If node i has called mine(b) and the attempt is successful, anyone who calls
Fmine.verify(b, i) will obtain an answer of 1; all other calls to Fmine.verify(b, i)
will return 0.

Henceforth in the paper, we assume that the choice of the success probability
p is a global, public parameter. We will describe how to choose p later.

4.2 Formal Protocol in the Fmine-Hybrid World

We describe how to achieve adaptively secure BA with sublinear round complexity,
tolerating 1− ε fraction of corruption for any arbitrarily small positive constant
ε. Recall that without loss of generality, we assume that node 0 is the designated
sender.

Valid vote. With respect to some moment in time, a valid vote for the value b
from node i is of the following form:

6 The name Fmine is making an analogy to Bitcoin mining. Each call to Fmine is like
an attempt to mine a ticket to vote in the protocol.
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Parameters: Let ε be the fraction of forever honest nodes and δ be the desired failure
probability.
Fmine is instantiated with a probability p := min{1, 1

εn
log 2

δ
}. Let R = d 3

ε
· ln 2

δ
e be

the total number of stages.

Stage 0: Initialization. No message is multicast in this stage.

– The sender 0 produces a valid 1-batch of vote for its value b0 by producing a
signature Sig0(b0).

– Every node i sets Extractedi ← ∅.

Stage r ∈ [1..R]. Each such stage consists of 2 rounds.

1. In the first round, every node i performs the following:
– For each bit b, if node i has seen a valid r-batch of votes for b and b /∈

Extractedi, then it multicasts any such r-batch for b to everyone, and sets
Extractedi ← Extractedi ∪ {b}.

2. In the second round, each node i 6= 1 does the following. For each bit b, if it
has seen a valid r-batch of votes for b and node i has never called Fmine.mine(b)
before, then it calls Fmine.mine(b) and executes the following if the result is
successful:
– It sets Extractedi ← Extractedi ∪ {b}.
– It multicasts a valid (r + 1)-batch of votes for b, possibly by adding its own

valid vote (b, i).

Stage R + 1: Termination. No message is multicast in this stage. Every node i
performs the following:

– For each bit b, if node i has seen a valid (R+ 1)-batch for b, it sets Extractedi ←
Extractedi ∪ {b}.

– Output to Z. If |Extractedi| = 1, then it outputs the unique bi ∈ Extractedi to
Z; otherwise, outputs the default value 0 to Z.

Fig. 1: Our protocol. The protocol is described in the Fmine-hybrid world.
Section 5 will explain how to instantiate Fmine with cryptographic assumptions.



– If i = 0, i.e., i is the sender, then a valid vote is of the form (b, 0, Sig0(b)),
where Sig0(b) denotes a valid signature from the sender on the bit b.

– For i 6= 0, a valid vote w.r.t. some time t is of the form (b, i) such that
Fmine.verify(b, i) returns 1 at time t, i.e., by time t, node i must have called
Fmine.mine(b) and the result must have been successful.

Valid vote batch. For r ≥ 1, a valid r-batch of votes for value b consists of
valid votes for value b from r distinct nodes, one of which must be the sender 0.
Note that just like the definition of a valid vote, a valid vote batch is also defined
w.r.t. to some moment of time (which we sometimes omit writing explicitly if
the context is clear).

Since we have explained the intutition behind our protocol earlier, we now
give a formal presentation of the protocol in Figure 1 — here “multicast” means
sending a message to everyone.

4.3 Analysis in the Fmine-Hybrid World

In this subsection, we shall prove the following theorem for our Fmine-hybrid-world
protocol described in Figure 1.

Theorem 2. Assume that the signature scheme is secure. For any 0 < ε, δ < 1
(that can be functions of n), the Fmine-hybrid Byzantine agreement protocol
described in Figure 1 satisfies consistency (with probability at least 1 − δ) and
validity and terminates in 2 · d 3ε ln 2

δ e rounds (with probability 1) w.r.t. any
non-uniform p.p.t. (A,Z) that corrupts no more than (1− ε)n nodes.

Committee. Without loss of generality, we consider a modification to the
protocol, where Fmine flips a coin for each (b, i) pair upfront. When Fmine receives
mine queries, it simply retrieves the corresponding coin that has already been
flipped earlier. In this world, we can define the notion of committees more easily:
For each bit b, a node i 6= 1 is in the committee Comb for b, if Coin[b, i] = 1.

Honest and corrupt votes. A (valid) vote for a bit b from a node i is said to
be honest if the node is so-far honest at the moment the vote is cast, which is
the moment when node i calls Fmine.mine(b); otherwise, the (valid) vote is said
to be corrupt or dishonest.

Handling signature failure. Assume that the signature scheme is secure, and
that A and Z are probabilistic polynomial time, it must hold that except with
negligible probability, no so-far honest node should have a forged signature in
view. This is formalized in the following fact:

Fact 1 (No signature failure) Assume that the signature scheme is secure.
Then, except with negligible probability, the following holds: if the sender is so-far
honest and did not sign the bit b ∈ {0, 1}, then no so-far honest node has seen a
valid signature on b from the sender.



Proof. By straightforward reduction to signature security.

There are two types of bad events that can cause our protocol’s security
to fail: 1) signature failure (captured by Fact 1); and 2) other stochastic bad
events related to Fmine’s coin flips. In the next subsection, we will bound the
probability of the latter type of bad events — and there we will pretend that the
signature scheme is “ideal” and there are no signature failures — but we stress
that technically, we are actually taking a union bound over signature failure and
the stochastic bad events analyzed in the next subsection.

Proofs: Bounding Stochastic Bad Events The protocol clearly satisfies
termination; and validity also follows trivially from Fact 1. Thus the remainder
of this section will focus on the consistency proof. Our proofs work for general
choices of parameters, including the honest fraction ε (which can be a function
of n) and the failure probability δ. As a special case, assuming that ε is any
arbitrarily small positive constant and moreover, the mining difficulty parameter
p and the total number of stages R are chosen as in Figure 1, then the failure
probability δ = e−ω(log κ) would be a negligible function in the security parameter
κ.

To prove consistency, we will prove that there is no discrepancy for either bit
(except with δ probability), which is formally defined as follows.

Discrepancy for b. A discrepancy for b ∈ {0, 1} occurs if at the end of the
protocol there exist two honest nodes such that b is in exactly one of the two
corresponding extracted sets. We further classify the following two types of
discrepancy if, in addition, the following conditions are satisfied.

Type-A. A type-A discrepancy for b occurs when b is first added to some honest
node’s extracted set in some stage in [1..R].

Type-B. A type-B discrepancy for value b occurs when R+ 1 is the only stage
in which b is added to any honest node’s extracted set.

Fact 2 If an honest vote is cast for value b (at the second round of some stage)
during the protocol, then for each forever honest node i, it holds at termination
that b ∈ Extractedi.

Lemma 1 (Type-A Discrepancy). Suppose the probability of success for
Fmine.mine(·) is p := min{1, 1

εn · log 1
δ }. For any value b, a type-A discrepancy

for value b happens with probability at most δ.

Proof. It suffices to prove the claim that if a type-A discrepancy for value b
occurs, then there are at least εn nodes, each of which has called Fmine.mine(b)
with unsuccessful result at some moment when it is still so-far honest. For
the trivial case e−εn ≥ δ, we have p = 1 and every mining attempt must be
successful. For the case e−εn < δ, this event happens with probability at most
(1− p)εn ≤ exp(−εnp) ≤ δ, which implies the result of the lemma.



The rest of the proof establishes the above claim. Observe that a type-A
discrepancy implies that at some moment, there is a first time when a so-far
honest node adds b to its extracted set in some stage r ∈ [1..R]. If this happened
in the second round of stage r, then this so-far honest node is in Comb and would
have been able to cast a valid (r+ 1)-batch of votes that can be seen by everyone
in stage r + 1. Therefore, a type-A discrepancy means that b is first added to a
so-far honest node i in the first round of stage r, which means node i has seen
some valid r-batch of votes.

Since this node i is so-far honest, it will multicast this batch to everyone, and
every so-far honest node that has not tried to call Fmine.mine(b) before will call
Fmine.mine(b) in the second round of stage r.

Since a type-A discrepancy occurs, it must be case that all (previous or present)
trials of Fmine.mine(b) by so-far honest nodes have returned unsuccessful. Since
at any moment, the number of so-far honest nodes is at least εn, we conclude
that the claim is true, and this completes the proof.

Fact 3 (Chernoff Bound) Suppose X is the sum of independent {0, 1}-random
variables. Then, for any τ > 0, the following holds:

Pr[X ≥ (1 + τ)E[X]] ≤ exp(−τ ·min{τ, 1} · E[X]

3
)

Lemma 2 (Type-B Discrepancy). Let p := min{1, 1
εn log 1

δ } as in Lemma 1,
and set R := d 3ε · ln

1
δ e. Then, for any value b, a type-B discrepancy for b happens

with probability at most δ.

Proof. A type-B discrepancy for b occurs implies that some honest node i sees
a valid (R + 1)-batch of votes, which are all cast by dishonest nodes. This is
because if one of the votes was cast by a so-far honest node (in the second round)
of some stage r ∈ [1..R], then everyone would have seen a valid (r + 1)-batch in
stage r + 1, in which case a discrepancy would not have occurred.

Observe that a dishonest vote is cast only if a node is corrupted before it calls
Fmine.mine(b) for the first time. There are at most (1− ε)n dishonest nodes and
each of them can call Fmine.mine(b) successfully independently with probability
p. Important: Note that even if nodes are corrupted adaptively (for instance,
based on mining results of other values), the success probability of mining value b
is still p.

For the trivial case, δ ≤ e−εn, R ≥ 3n is not interesting; hence, it suffices to
consider δ > e−εn and p < 1. We next consider two cases.
Case ε ≥ 1

4 . Set τ := 3ε
1−ε ≥ 1. By Chernoff Bound, the probability that there

are more than R = d 3ε · ln
1
δ e ≥ (1 + τ)(1 − ε)np dishonest votes is at most

exp(− τ(1−ε)np3 ) = δ.
Case ε < 1

4 . Set τ = 1. By Chernoff Bound, the probability that there are more

than R = d 3ε ·ln
1
δ e ≥ (1+τ)(1−ε)np dishonest votes is at most exp(− (1−ε)np

3 ) ≤ δ.

Corollary 1. Suppose that with probability 1, there are at least ε fraction of
forever honest nodes and let δ be the desired failure probability. By setting the



mining success probability p := min{1, 1
εn log 2

δ } and R := d 3ε · ln
2
δ e, the protocol

satisfies consistency with probability at least 1− δ.

Proof. For the trivial case δ
2 ≤ e

−εn, the bound R ≥ 3n is not interesting. Hence,

it suffices to consider δ
2 > e−εn and p < 1.

To use union bound over type-A and type-B discrepancy for both values of b,
we set the failure probability to be δ

2 in Lemmas 1 and 2.

5 Removing the Idealized Functionality Fmine

So far, we have assumed the existence of an Fmine ideal functionality. In this
section, we describe how to instantiate the protocols in the real world. Our
techniques follow the approach described by Abraham et al. [1]. Although this
part is not a contribution of our paper, for completeness, we describe all the
building blocks and the approach in a self-contained manner.

5.1 Preliminary: Adaptively Secure Non-Interactive
Zero-Knowledge Proofs

We use f(κ) ≈ g(κ) to mean that there exists a negligible function ν(κ) such
that |f(κ)− g(κ)| < ν(κ).

A non-interactive proof system henceforth denoted nizk for an NP language
L consists of the following algorithms.

– crs ← Gen(1κ,L): Takes in a security parameter κ, a description of the
language L, and generates a common reference string crs.

– π ← P(crs, stmt, w): Takes in crs, a statement stmt, a witness w such that
(stmt, w) ∈ L, and produces a proof π.

– b ← V(crs, stmt, π): Takes in a crs, a statement stmt, and a proof π, and
outputs 0 (reject) or 1 (accept).

Perfect completeness. A non-interactive proof system is said to be perfectly
complete, if an honest prover with a valid witness can always convince an honest
verifier. More formally, for any (stmt, w) ∈ L, we have that

Pr [crs← Gen(1κ,L), π ← P(crs, stmt, w) : V(crs, stmt, π) = 1] = 1

Non-erasure computational zero-knowledge. Non-erasure zero-knowledge
requires that under a simulated CRS, there is a simulated prover that can produce
proofs without needing the witness. Further, upon obtaining a valid witness to
a statement a-posteriori, the simulated prover can explain the simulated NIZK
with the correct witness.

We say that a proof system (Gen,P,V) satisfies non-erasure computational
zero-knowledge iff there exists probabilistic polynomial time algorithms (Gen0,P0,Explain)
such that



Pr
[
crs← Gen(1κ),AReal(crs,·,·)(crs) = 1

]
≈

Pr
[
(crs0, τ0)← Gen0(1κ),AIdeal(crs0,τ0,·,·)(crs0) = 1

]
,

where Real(crs, stmt, w) runs the honest prover P(crs, stmt, w) with random-
ness r and obtains the proof π, it then outputs (π, r); Ideal(crs0, τ0, stmt, w) runs
the simulated prover π ← P0(crs0, τ0, stmt, ρ) with randomness ρ and without a
witness, and then runs r ← Explain(crs0, τ0, stmt, w, ρ) and outputs (π, r).

Perfect knowledge extration. We say that a proof system (Gen,P,V) satis-
fies perfect knowledge extraction, if there exists probabilistic polynomial-time
algorithms (Gen1,Extr), such that for all (even unbounded) adversary A,

Pr [crs← Gen(1κ) : A(crs) = 1] = Pr [(crs1, τ1)← Gen1(1κ) : A(crs1) = 1] ,

and moreover,

Pr [(crs1, τ1)← Gen1(1κ); (stmt, π)← A(crs1);w ← Extr(crs1, τ1, stmt, π) :

V(crs1, stmt, π) = 1, but (stmt, w) /∈ L] = 0

5.2 Adaptively Secure Non-Interactive Commitment Scheme

An adaptively secure non-interactive commitment scheme consists of the following
algorithms:

– crs ← Gen(1κ): Takes in a security parameter κ, and generates a common
reference string crs.

– C ← com(crs, v, ρ): Takes in crs, a value v, and a random string ρ, and outputs
a committed value C.

– b ← ver(crs, C, v, ρ): Takes in a crs, a commitment C, a purported opening
(v, ρ), and outputs 0 (reject) or 1 (accept).

Computationally hiding under selective opening. We say that a commit-
ment scheme (Gen, com, ver) is computationally hiding under selective opening,
iff there exists a probabilistic polynomial time algorithms (Gen0, com0,Explain)
such that

Pr
[
crs← Gen(1κ),AReal(crs,·)(crs) = 1

]
≈

Pr
[
(crs0, τ0)← Gen0(1κ),AIdeal(crs0,τ0,·)(crs0) = 1

]
,

where Real(crs, v) runs the honest algorithm com(crs, v, r) with randomness r
and obtains the commitment C, it then outputs (C, r); Ideal(crs0, τ0, v) runs the
simulated algorithm C ← comm0(crs0, τ0, ρ) with randomness ρ and without v,
and then runs r ← Explain(crs0, τ0, v, ρ) and outputs (C, r).

Perfectly binding. A commitment scheme is said to be perfectly binding iff for
every crs in the support of the honest CRS generation algorithm, there does not
exist (v, ρ) 6= (v′, ρ′) such that com(crs, v, ρ) = com(crs, v′, ρ′).



Theorem 3 (Instantiation of our NIZK and commitment schemes [17]).
Assume standard bilinear group assumptions7. Then, there exists a proof system
that satisfies perfect completeness, non-erasure computational zero-knowledge,
and perfect knowledge extraction. Further, there exist a commitment scheme that
is perfectly binding and computationally hiding under selective opening.

Proof. The existence of such a NIZK scheme was shown by Groth et al. [17] via
a building block that they called homomorphic proof commitment scheme. This
building block can also be used to achieve a commitment scheme with the desired
properties.

NP Language Used in Our Construction. In our construction, we will use
the following NP language L. A pair (stmt, w) ∈ L iff

– parse stmt := (ρ, c, crscomm, b), parse w := (sk, s);
– it must hold that c = comm(crscomm, sk, s), and PRFsk(b) = ρ.

5.3 Removing Fmine with Cryptography

Cryptographic building blocks. We can remove the Fmine oracle by leverag-
ing cryptographic building blocks including a pseudorandom function family, a
non-interactive zero-knowledge proof system that satisfies computational zero-
knowledge and computational soundness, and a perfectly binding and computa-
tionally hiding commitment scheme.

Compiler from ideal-world protocol to a real-world protocol. Essentially,
with these primitives we can construct an appropriate VRF with adaptive security.
Note that some earlier works [7,22] also achieved such an adaptively secure VRF
using unique signatures and random oracles. Here we adopt the approach in
Abraham et al. [1], since it removes the random oracle assumption.

We now provide a formal description of how to compile our Fmine-hybrid
protocols into real-world protocols using cryptography. The intuition is very
simple. Every node commits to a PRF secret key in its public key. This committed
secret key is used to evaluate a PRF on b = 0 or b = 1 to determine whether
the node belongs to the b-th committee. The node can then prove to everyone
that the eligibility determination is performed correctly by employing a NIZK.
Below we give a more formal description of how to rely on this idea to compile
the earlier Fmine-hybrid protocol to the real world.

– PKI setup. Upfront, a trusted party runs the CRS generation algorithms
of the commitment and the NIZK scheme to obtain crscomm and crsnizk. It
then chooses a secret PRF key for every node, where the i-th node has key

7 We need either the subgroup decision assumption or the decisional linear assumption
according to Groth et al. [17].



ski. It publishes (crscomm, crsnizk) as the public parameters, and each node i’s
public key denoted pki is computed as a commitment of ski using a random
string si. The collection of all users’ public keys is published to form the PKI,
i.e., the mapping from each node i to its public key pki is public information.
Further, each node i is given the secret key (ski, si).

– Instantiating Fmine.mine. Recall that in the ideal-world protocol a node i
calls Fmine.mine(b) to check if it is in the b-th committee. Now, instead, the
node i calls ρ := PRFski(b), and computes the NIZK proof

π := nizk.P((ρ, pki, crscomm, b), (ski, si))

where si the randomness used in committing ski during the trusted setup.
Intuitively, this zero-knowledge proof proves that the evaluation outcome ρ is
correct w.r.t. the node’s public key (which is a commitment of its secret key).

The mining attempt for b is considered successful if ρ < Dp where Dp is an
appropriate difficulty parameter such that a random string of appropriate
length is less than Dp with probability p — the probability p is selected in
the same way as the earlier Fmine-hybrid world in Figure 1.

Recall that earlier in our Fmine-hybrid protocol, every message multicast
by a so-far honest node i is a vote of the form (b, i) where node i has
successfully called Fmine.mine(b). Each such message (b, i) that node i wants
to multicast is translated to the real-world protocol as follows: we rewrite
(b, i) as (b, i, ρ, π) where the terms ρ and π are those generated by i in place
of calling Fmine.mine(b) in the real world (as explained above). Note that in
our Fmine-hybrid protocols a node j 6= i may also relay a message (b, i) mined
by i — in the real world, node j would be relaying (b, i, ρ, π) instead.

– Instantiating Fmine.verify. In the Fmine-hybrid world, a node would call
Fmine.verify to check the validity of votes upon receiving them, In the real-
world protocol, we perform the following instead: upon receiving the vote
(b, i, ρ, π), a node can verify the vote’s validity by checking:

1. ρ < Dp where p is an appropriate difficulty parameter parametrized in the
same way as Figure 1 and

2. π is indeed a valid NIZK for the statement formed by the tuple (ρ, pki, crscomm, b).
The tuple is discarded unless both checks pass.

Extending the security guarantees to the real-world protocol. Now using
the same proofs as Abraham et al. [1], we can prove that the compiled real-world
protocols enjoy the same security properties as the Fmine-hybrid protocols. Since
the proofs follow identically, we omit the details and refer the reader to Abraham
et al. [1]. In the following theorem we assume that the pseudorandom function
family employed is secure, the non-interactive zero-knowledge proof system
employed satisfies computational zero-knowledge and computational soundness,
and moreover, the commitment scheme is perfectly binding and computationally
hiding.



Theorem 4 (Real-world protocol: restatement of Theorem 1). Assume
that the cryptographic primitives employed are secure in the sense mentioned
above8. For parameters ε, δ ∈ (0, 1) which are allowed to be functions in n, the
aforementioned real-world protocol terminates in O(log(1/δ)/ε) number of rounds
and achieves BA with 1− δ − negl(κ) probability in the presence of an adversary
that adaptively corrupts at most (1− ε)n nodes and runs in time polynomial in κ.

Proof. Note our techniques for instantiating Fmine with actual cryptography are
borrowed from Abraham et al. [1]. Their proof for showing that the real-world
protocol preserves the security properties proved in the ideal world is immediately
applicable to our case.
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