S Foundationsof \\\\ \
Dlﬂ'er.entlally Obhl
A’lgomhms | Elalne Shi ;

et ——  W— .

r\”-




se se

o




)



Secure CPU



Access patterns to even
encrypted data leak sensitive
information.

Secure CPU



Access Pattern Attack: Computing on JPEG Image

Original Recovered

Controlled-Channel Attacks [XCP’15]




— [Yao'82, GMW'87]

i
i
g e (HE
:

s +

=2 uE
Access Pattern Leakage in MPC



e i . S, Sta IL
Oblivious RAM ——
— e,

An algorithmic approach that
provably obfuscates access patterns



/// y '\

Oblivious algorithm

ﬁ Real-world addresses

Simulator Simulated addresses



ObllVlous RAM é

e

"Encrypting the access patterns”



—, Ty \1

ObllVlous RAM é

e T

"Encrypting the access patterns”

e Permute data in memory
e Shuffle data upon accesses



ORAM State of the Art







ORAM State of the Art

\ Any program can be made oblivious with

= O(log N) ©0 O(log? N) overhead




ORAM State of the Art

Va :‘\ Any program can be made oblivious with
=

= O(l()g N) to 0(10g2 N) overhead

/\

Implicit assumption:

Runtime is fixed and known



I ption:

Runtime i and known

/’“W



e Must pad to worst-case runtime
e Can incur even linear overhead

I ption:

Runtime | d and known

X



Relax the obliviousness notion?

e Still provide meaningful privacy
e Significantly improve efficiency




Differential Obliviousness

Inspired by differential privacy [Dwork et al. 05]



Memory CCCC? LI

Algorithm
(e.g., compaction,
sorting)

# randomized

Database




Memory ﬁﬁﬁﬁ? LI

Algorithm

(e.g., data analytics)

# Neighboring input DBs

kkkkkkkkkkkkkkkk

Database GBBHOBBE OSLLBLLBE-



f

t

Memory s

mn
.0
-
>
®
c
@©
®
——
©
©
o)
o
N

)
7p)
©
O
(©
e
(©
O

Algorithm



Algorithm

(e.g., data analytics)

Database



Access patterns on neighboring DBs must be close

——
St

iiii? ]




VT

Prinny e S]se Pr[Yy e S] + ©




(€, O)-Differential Obliviousness

0 What is being relaxed?
e Still provide meaningful privacy?

e Overcome obliviousness barriers?



(€, O)-Differential Obliviousness

0 What is being relaxed?
e Still provide meaningful privacy?

e Overcome obliviousness barriers?



What is being
relaxed?

Closeness needs to hold
only for neighboring DBs

Priny e S]se Priy € S] +

This must hold for any S



What is being
relaxed?

Closeness needs to hold
only for neighboring DBs

Allow multiplicative,
non-negl. loss

Priny e S]<e Pr[y € S] +

This must hold for any S



Does not require padding
to worst-case runtime

Priny e S]se Priy € S] +

This must hold for any S



(€, O)-Differential Obliviousness

0 What is being relaxed?
e Still provide meaningful privacy?

9 Overcome obliviousness barriers?



Bad idea if you are protecting your
Bitcoin signing key!

\

9 Still provide meaningful privacy?



When does DO make sense?

"+ Distributed data I'.'.'.'l
. [
analytics

Secure CPU



Typical parameters

Pri*y* e S] < e Prlny e S] +

yS



(€, O)-Differential Obliviousness

0 What is being relaxed?
e Still provide meaningful privacy?

e Overcome obliviousness barriers?



Differential
Obliviousness

(N log N) O(N log log N)

necessary

Obliviousness






e Simple yet non-trivial
e Frequent algorithmic building block

e \Warmup scheme in paper



1o e o









Stable Compaction: insecure algorithm

(g (SR D OSE ) 8.
R |

O\ /Ne._ ¢
eSS
G :

SO ,



Stable Compaction: insecure algorithm

(g (SR D OSE ) 8.
R |

O\ /Ne._ ¢
eSS
G :

SO ,



Stable Compaction: insecure algorithm

O\ /Ne._ ¢
eSS
G :

SO ,



Stable Compaction: insecure algorithm




Stable Compaction: insecure algorithm




Stable Compaction: insecure algorithm




Stable Compaction: oblivious algorithm




Stable Compactlon oblivious algorithm




Takes N log N time

Sorting




N log N time is necessary for obliviousness




Stable Compaction

Differential
Obliviousness

Obliviousness

Q(NlogN) | O(N log log N) |

necessary




Differential

Obliviousness oL
Obliviousness

Cannot leak progress Leak rough notion of
progress



polylog(N) batch

2~5 kitties so far



polylog(N) batch

O-sort f




-2







2II 0




~ 5~8 kitties so far p-

|
|
|
|
|
&
&







= = = = R A




Need:

Oblivious and DP alg. that estimates
all prefix sums, with polylog error

w7 00




Naive algorithm:

e Compute all N prefix sums
e Add independent noise to each

All prefix sums -- DP and Oblivious



-~ <24
SE s T )
| /i I e p ,9‘_—:‘-_"‘;\

Naive algorithm:

e Compute all N prefix sums
e Add independent noise to each




[Dwork et al. 10, CSS’10]

All prefix sums -- DP and Oblivious









e Every input appears in only log N nodes!
e Achieve only ©(log N) error per node!



e Every prefix sum is the sum of log N nodes
e Achieve poly log N error for each prefix sum



Non-trivial combination of DP and
oblivious algorithms

Apply oblivious alg to
small bins

Make DP mechanisms
oblivious



There exists an O(N log log N)

time, -DO algorithm
that realizes stable compaction



Is this necessary?

e 0g log N) -

time, (9(1), ncg )-DO algorithm
that realizes stable compaction




-Differentially Oblivious Stable
Compaction:

N log N is necessary

even when ¢ is arbitrarily large!




Other Results in Our Paper
A ‘f

e lower bounds for obrliviousness
e Mmerging, range query DB

> Differential|y"’6b|ivious algorithms with
O(log log N) blowup. %,

> Q(log N) blowup necessary for full
obliviousness. |




Closely Related Works

(Wagh et al.] DP-ORAM, achieve O(1) gain

| Kellaris et al.] DP for length, otherwise fully oblivious

|[Mazloom et al.| DP access patterns for MPC



6,4’ & \,
s just a bet

o




“‘Di
'Cmpﬁ&ltlo s
Alternatlve notlons’?




