
Foundations of
Differentially Oblivious
Algorithms

Based on [CCMS’18] and [LSX’18]

Elaine Shi

...

...

...

Secure CPU

Secure CPU

Access patterns to even
encrypted data leak sensitive

information.

Original Recovered

Controlled-Channel Attacks [XCP’15]

Access Pattern Attack: Computing on JPEG Image

Secure multi-party
computation

Access Pattern Leakage in MPC

[Yao’82, GMW’87]

Oblivious RAM

An algorithmic approach that
provably obfuscates access patterns

Real-world addresses

Simulator Simulated addresses

≈
Oblivious algorithm

Oblivious RAM

“Encrypting the access patterns”

Oblivious RAM

Oblivious RAM

“Encrypting the access patterns”

● Permute data in memory
● Shuffle data upon accesses

ORAM State of the Art
Any program can be made oblivious with

O(log N) to O(log2 N) overhead
[Optoroma, Circuit ORAM, ...]

ORAM State of the Art

Ω(log N) is necessary
[GO’96, LN’18]

Any program can be made oblivious with

O(log N) to O(log2 N) overhead

ORAM State of the Art
Any program can be made oblivious with

O(log N) to O(log2 N) overhead

Runtime is fixed and known
Implicit assumption:

Runtime is fixed and known
Implicit assumption:

Runtime is fixed and known
Implicit assumption:

● Must pad to worst-case runtime

● Can incur even linear overhead

Relax the obliviousness notion?

● Still provide meaningful privacy
● Significantly improve efficiency

Differential Obliviousness

Inspired by differential privacy [Dwork et al. 05]

Algorithm
(e.g., compaction,

sorting)

Database

Memory

randomized

Database

Memory

Neighboring input DBs
Algorithm

 (e.g., data analytics)

Algorithm
 (e.g., data analytics)

Database

Memory

Database

Memory ≈
Access patterns on neighboring DBs must be close

Algorithm
 (e.g., data analytics)

≈
Pr[∈ S] ≤ eϵ Pr[∈ S] + δ

This must hold for any S

Access patterns on neighboring DBs must be close

≈
Pr[∈ S] ≤ eϵ Pr[∈ S] + δ

This must hold for any S

(ϵ, δ)-Differential Obliviousness

(ϵ, δ)-Differential Obliviousness

What is being relaxed?

Still provide meaningful privacy?

Overcome obliviousness barriers?

(ϵ, δ)-Differential Obliviousness

What is being relaxed?

Still provide meaningful privacy?

Overcome obliviousness barriers?

Pr[∈ S] ≤ eϵ Pr[∈ S] + δ
This must hold for any S

Closeness needs to hold
only for neighboring DBs

What is being
relaxed?

Pr[∈ S] ≤ eϵ Pr[∈ S] + δ
This must hold for any S

Closeness needs to hold
only for neighboring DBs

What is being
relaxed?

Allow multiplicative,
non-negl. loss

Pr[∈ S] ≤ eϵ Pr[∈ S] + δ
This must hold for any S

Does not require padding
to worst-case runtime

(ϵ, δ)-Differential Obliviousness

What is being relaxed?

Still provide meaningful privacy?

Overcome obliviousness barriers?

What is being relaxed?

Still provide meaningful privacy?

Overcome obliviousness barriers?

Bad idea if you are protecting your
Bitcoin signing key!

Secure CPU

Distributed data
analytics

When does DO make sense?

Pr[∈ S] ≤ eϵ Pr[∈ S] + δ
This must hold for any S

Typical parameters

Negl. in NConstant

(ϵ, δ)-Differential Obliviousness

What is being relaxed?

Still provide meaningful privacy?

Overcome obliviousness barriers?

Obliviousness

Ω(N log N)
necessary

Differential
Obliviousness

O(N log log N)

Stable Compaction

Stable Compaction

Stable Compaction: Why do we care?

● Simple yet non-trivial

● Frequent algorithmic building block

● Warmup scheme in paper

Stable Compaction: insecure algorithm

Stable Compaction: insecure algorithm

Stable Compaction: insecure algorithm

Stable Compaction: insecure algorithm

Stable Compaction: insecure algorithm

Stable Compaction: insecure algorithm

Stable Compaction: insecure algorithm

Stable Compaction: insecure algorithm

Stable Compaction: insecure algorithm

Completes in O(N) time

Leaks exact progress

Stable Compaction: oblivious algorithm

Sorting
network

Stable Compaction: oblivious algorithm

Stable Compaction: oblivious algorithmTakes N log N time

Sorting
network

Stable Compaction: oblivious algorithmN log N time is necessary for obliviousness

Sorting
network

Assumption: algorithm does not perform encoding on the kitties

Obliviousness

Ω(N log N)
necessary

Differential
Obliviousness

O(N log log N)

Stable Compaction

Obliviousness

Cannot leak progress

Differential
Obliviousness

Leak rough notion of
progress

polylog(N) batch

2~5 kitties so far

DP oracle

polylog(N) batch

O-sort

DP oracle

2~5 kitties so far

polylog(N) batch

O-sort

polylog(N) error,
DP estimate

5~8 kitties so far

polylog(N) error,
DP estimate

Completes in

O(N log log N)
time

Need:

Oblivious and DP alg. that estimates
all prefix sums, with polylog error

All prefix sums -- DP and Oblivious

Naive algorithm:

● Compute all N prefix sums
● Add independent noise to each

All prefix sums -- DP and Oblivious

Naive algorithm:

● Compute all N prefix sums
● Add independent noise to each

Incurs ϴ(N) error

All prefix sums -- DP and Oblivious
[Dwork et al. 10, CSS’10]

● Every node in the tree represents a range

● Every node in the tree represents a range
● Compute DP estimate for every node in the tree

● Every input appears in only log N nodes!
● Achieve only Ѳ(log N) error per node!

● Every prefix sum is the sum of log N nodes
● Achieve poly log N error for each prefix sum

Summary: Leak rough notion of progress

Non-trivial combination of DP and
oblivious algorithms

Apply oblivious alg to
small bins

Make DP mechanisms
oblivious

There exists an O(N log log N)
time, (ϴ(1), negl(N))-DO algorithm

that realizes stable compaction

Putting it altogether

There exists an O(N log log N)
time, (ϴ(1), negl(N))-DO algorithm

that realizes stable compaction

Is this necessary?

(ϵ, 0) -Differentially Oblivious Stable
Compaction:
 N log N is necessary
even when ϵ is arbitrarily large!

Other Results in Our Paper

➢ Differentially oblivious algorithms with
O(log log N) blowup.

➢ Ω(log N) blowup necessary for full
obliviousness.

● merging, range query DB
● lower bounds for obliviousness

Closely Related Works

[Wagh et al.] DP-ORAM, achieve O(1) gain

[Kellaris et al.] DP for length, otherwise fully oblivious

[Mazloom et al.] DP access patterns for MPC

This is just a beginning.

Differential obliviousness for generic programs?
Composition?
Alternative notions?
Practical performance?

This is just a beginning.

Thank you!
elaine@cs.cornell.edu

Differential obliviousness for generic programs?
Composition?
Alternative notions?
Practical performance?

