

Longest-Chain Consensus Explained

Elaine Shi

State-Machine Replication

(a.k.a. linearly-ordered log, consensus)

State-Machine Replication

(a.k.a. linearly-ordered log, consensus)

Consistency: Honest nodes agree on log

Liveness: TXs are incorporated soon

Consensus: A 30-year-old Problem

Cryptocurrencies brought consensus to a large scale

Both reach consensus by voting

Who coordinates voting?

Who coordinates voting?

Leader

Who coordinates voting?

Leader

Longest Chain

Classical vs longest-chain

Simplest proof for "longest-chain" style protocol

Assume: honest nodes' messages delivered in 1 round.

- In round i, node i mod n is allowed to vote
- Each round i, node i votes for the currently most popular

Assume: honest nodes' messages delivered in 1 round.

- In round i, node i mod n is allowed to vote
- Each round i, node i votes for the currently most popular

Vote Growth Lemma: by the end of round T = n, every honest node's most popular bit has at least $\frac{2}{3}$ n + 1 votes

Vote Growth Lemma: by the end of round T = n, every honest node's most popular bit has at least $\frac{2}{3}$ n + 1 votes

Proof: every honest-voter round, honest voter signs most popular bit b in its view and shares all votes on b with others

Consistency Theorem: by the end of round T = n, it cannot be that both bits have $\geq \frac{2}{3} n + 1$ votes

Consistency Theorem: by the end of round T = n, it cannot be that both bits have $\geq \frac{2}{3} n + 1$ votes

Proof: an honest-voter round increases total # votes by 1, a corrupt-voter round increases total # votes by at most 2. Thus by round n, total # votes $\leq (\frac{2}{3} n + 1) + 2(\frac{1}{3} n - 1) < \frac{4n}{3}$.

Randomized, longest-chain variant of this achieve security against minority corruption

[PS, eprint'16, Asiacrypt'17]

Snow White [DPS, eprint'16, FC'19]

PoS-based

c.f. Herding in Economics

[Banarjee'92]

c.f. Herding in Economics

- Everyone has some independent signal about some fundamental W (e.g., W = "is there global warming?")
- Announce their best guess for W one by one
- Update belief based on observations

c.f. Herding in Economics

- Everyone has some independent signal about some fundamental W (e.g., W = "is there global warming?")
- Announce their best guess for W one by one
- Update belief based on observations

Cascade: If I originally believe in YES but I hear NO, NO, best to announce NO

[Banarjee'92]

Foolishness of the crowd

- Everyone has some independent signal about some fundamental W (e.g., W = "is there global warming?")
- Announce their best guess for W one by one
- Update belief based on observations

Cascade: If I originally believe in YES but I hear NO, NO, best to announce NO

[Banarjee'92]

Classical vs longest-chain

Simplest proof for "longest-chain" style protocol

Longest-chain consensus

Small amortized bandwidth (one vote per block)

Deterministic longest-chain protocols in practice

Thank You!

elaine@cs.cornell.edu