MPC for MPC: Secure Computation on a Massively Parallel Computation Infrastructure

Elaine Shi, Cornell

Joint work with Hubert Chan, Kai-Min Chung, and Wei-Kai Lin

Massively Parallel Computation (MPC)

is a model of computation that captures MapReduce, Hadoop, Spark

Karloff, Suri, and Vassilvitskii (SODA 2010) and long line of work in the algorithms community in the past decade

Massively Parallel Computation (MPC)

Each machine has reasonably large space **s = N^ε** e.g., 1 TB

But not large enough to store all data **N** e.g., 1 PB

MPC computation proceeds in rounds

MPC computation proceeds in rounds

MPC computation proceeds in rounds

Previously, cryptography for parallel computation focused on PRAMs.

PRAMs **not** a fit for modern parallel architectures.

Separation: Tasks that take Ω(log N) depth on PRAMs can be computed in o(log N) rounds on MPC

Cryptography in the MPC model?

Moderate space

Cryptography in the MPC model? Yes! We call it MPC for MPC.

Cryptography in the MPC model? Yes! We call it MPC for MPC.

Can MPC algorithms be made secure with small overhead?

Scenario 1: secure endpoints, unsafe communication

MPC algorithm with S local space and R rounds

Communication-oblivious MPC algorithm with O(s) local space and O(R) rounds

Scenario 2: unsafe endpoints, unsafe communication

70

Scenario 2: unsafe endpoints, unsafe communication

MPC algorithm with S local space and R rounds

Secure MPC-for-MPC algorithm with O(s) poly(k) local space and O(R) rounds, tolerating ½ corruptions

Our work is an exciting beginning...

We lay the groundwork for securing computation in realistic parallel architectures

Show promising feasibility results, with evidence of concrete efficiency

Rich space for future work, a bridge between algorithms and crypto e.g., secure large-scale AI

Thank you!

elaine@cs.cornell.edu