MPC for MPC:
Secure Computation on a Massively Parallel Computation Infrastructure

Elaine Shi, Cornell
Joint work with Hubert Chan, Kai-Min Chung, and Wei-Kai Lin
Massively Parallel Computation (MPC)

is a model of computation that captures MapReduce, Hadoop, Spark

Karloff, Suri, and Vassilvitskii (SODA 2010) and long line of work in the algorithms community in the past decade
Massively Parallel Computation (MPC)

Each machine has reasonably large space
\[s = N^\varepsilon \quad \text{e.g., 1 TB} \]

But not large enough to store all data
\[N \quad \text{e.g., 1 PB} \]
MPC computation proceeds in rounds

Round 1

Compute locally

Send messages
MPC computation proceeds in rounds

Round 1

Round 2
MPC computation proceeds in rounds

Round complexity is the primary metric
Previously, cryptography for parallel computation focused on PRAMs.
PRAMs **not** a fit for modern parallel architectures.
Separation: Tasks that take $\Omega(\log N)$ depth on PRAMs can be computed in $o(\log N)$ rounds on MPC.

- Moderate space
- Small CPU cache

MPC

PRAM
Cryptography in the MPC model?

Moderate space
Cryptography in the MPC model?

Yes! We call it **MPC for MPC**.
Cryptography in the MPC model?

Yes! We call it **MPC for MPC**.
Can MPC algorithms be made **secure** with **small overhead**?
Scenario 1: **secure endpoints, unsafe communication**
Scenario 1: secure endpoints, unsafe communication

MPC algorithm with S local space and R rounds

Communication-oblivious MPC algorithm with $O(s)$ local space and $O(R)$ rounds
Scenario 2: unsafe endpoints, unsafe communication
Scenario 2: **unsafe endpoints, unsafe communication**

MPC algorithm with S local space and R rounds

Secure MPC-for-MPC algorithm with $O(s \text{ poly}(k))$ local space and $O(R)$ rounds, tolerating $\frac{1}{3}$ corruptions
Our work is an exciting beginning...

- We lay the groundwork for securing computation in realistic parallel architectures.

- Show promising feasibility results, with evidence of concrete efficiency.

- Rich space for future work, a bridge between algorithms and crypto, e.g., secure large-scale AI.
Thank you!

elaine@cs.cornell.edu