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Abstract

We design an encryption scheme called Multi-dimensional
Range Query over Encrypted Data (MRQED), to address the
privacy concerns related to the sharing of network audit logs
and various other applications. Our scheme allows a network
gateway to encrypt summaries of network flows before sub-
mitting them to an untrusted repository. When network intru-
sions are suspected, an authority can release a key to an au-
ditor, allowing the auditor to decrypt flows whose attributes
(e.g., source and destination addresses, port numbers, etc.)
fall within specific ranges. However, the privacy of all irrele-
vant flows are still preserved. We formally define the security
for MRQED and prove the security of our construction un-
der the decision bilinear Diffie-Hellman and decision linear
assumptions in certain bilinear groups. We study the practi-
cal performance of our construction in the context of network
audit logs. Apart from network audit logs, our scheme also
has interesting applications for financial audit logs, medical
privacy, untrusted remote storage, etc. In particular, we show
that MRQED implies a solution to its dual problem, which en-
ables investors to trade stocks through a broker in a privacy-
preserving manner.

1 Introduction

Recently, the network intrusion detection community has
made large-scale efforts to collect network audit logs from
different sites [25, 35, 24]. In this application, a networkgate-
way or an Internet Service Provider (ISP) can submit network
traces to an audit log repository. However, due to the pres-
ence of privacy sensitive information in the network traces,
the gateway will allow only authorized parties to search their
audit logs. We consider the following four types of entities: a
gateway, anuntrusted repository, anauthority, and anaudi-
tor. We design a cryptographic primitive that allows the gate-
way to submit encrypted audit logs to the untrusted reposi-
tory. Normally, no one is able to decrypt these audit logs.
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However, when malicious behavior is suspected, an auditor
may ask the authority for a search capability. With this search
capability, the auditor can decrypt entries satisfying certain
properties, e.g., network flows whose destination address and
port number fall within a certain range. However, the privacy
of all other flows should still be preserved. Note that in prac-
tice, to avoid a central point of trust, we can have multiple
parties to jointly act as the authority. Only when a sufficient
number of the parities collaborate, can they generate a valid
search capability.

We name our encryption scheme Multi-dimensional
Range Query over Encrypted Data (MRQED). In MRQED,
we encrypt a message with a set of attributes. For example, in
the network audit log application, the attributes are the fields
of a network flow, e.g., source and destination addresses, port
numbers, time-stamp, protocol number, etc. Among these at-
tributes, suppose that we would like to support queries on the
time-stampt, the source addressa and the destination port
numberp. Our encryption scheme provides the following
properties:

• Range query on attributes. An authority can issue a
decryption key for all flows whose(t, a, p) falls within
a certain range:t ∈ [t1, t2] and a ∈ [a1, a2] and
p ∈ [p1, p2]. Notice that range query implies equality
and greater-than (smaller-than) tests, e.g.,t ≥ t1 and
a = a1 andp ≤ p1. With this decryption key, all flows
whose(t, a, p) tuple falls within the above range can be
decrypted.

• Security requirement. Normally, no one can learn any
information from the ciphertexts. Under special circum-
stances, however, an auditor may obtain a decryption
key from an authority for some ranget ∈ [t1, t2] and
a ∈ [a1, a2] andp ∈ [p1, p2]. For any flow, if at least one
attribute amongt, a, p lies outside the specified range,
the auditor fails to decrypt it. The auditor inevitably
learns that the(t, a, p) tuple of this flow does not lie
within the given range. However, apart from this in-
formation, the auditor cannot learn anything more about
the flow. For example, the auditor cannot learn anything
about attributes other thant, a, p; in addition, she cannot
decide whethert < t1 or t > t2, etc.

Our results and contributions. We are among the earliest
to study the problem of point encryption, range query, and
conditional decryption of matching entries. We propose a
provably secure encryption scheme that allows us to achieve



Scheme Pub. Key Size Encrypt. Cost CT Size Decrypt. Key Size Decrypt. Cost Security Model
BonehWaters06 [13] O(D · T ) O(D · T ) O(D · T ) O(D) O(D) MC

Naive AIBE-based scheme O(1) O((log T )D) O((log T )D) O((log T )D) O((log T )D) MR
Our scheme O(D · log T ) O(D · log T ) O(D · log T ) O(D · log T ) O((log T )D) MR

Table 1. Performance of different approaches.D denotes the number of dimensions andT the number of points in each.
The naive AIBE-based scheme is described in Section 4.3. MC and MR refer to thematch-concealingandmatch-revealing

security models respectively as defined in Section 3.

these properties. Table 1 summarizes the asymptotic perfor-
mance of our scheme in comparison with other approaches.
Please refer to Section 2 for a detailed comparison between
our scheme MRQED, and the concurrent work BonehWa-
ters06 [13]. We study the practical performance of MRQED,
and show that it makes the encrypted network audit log appli-
cation feasible. We also study the dual problem to MRQED,
where one encrypts under a hyper-range in multi-dimensional
space, and decrypts under a point. We show that MRQED im-
plies a solution to its dual problem, which enables investors to
trade stocks through a broker in a privacy-preserving manner.

Paper organization. In the remainder of this section, we
give more example applications of MRQED. We review re-
lated work in Section 2, and formally define the MRQED
problem in Section 3. In Section 4, we demonstrate some
initial attempts at constructing MRQED; while in Section 5,
we describe our novel construction which we consider the
main contribution of this paper. We note that the purpose
of Section 4 is not only to exhibit straw-man schemes, but
also to better motivate our design of MRQED as described
in Section 5. In particular, some of the primitives introduced
in Section 4 will later be used in Section 5 when we explain
our novel construction. Due to limit of space, formal security
proofs of security are provided in the online technical report
version [43]. In the proof, we borrow techniques from the
AHIBE scheme of Boyen and Waters [15]. As a result, the
security of our construction is likewise based on the hardness
of Decision Bilinear Diffie-Hellman problem and the Deci-
sion Linear problem. In Section 7, we consider the practical
performance of the scheme in the context of network audit
logs. We show that MRQED implies a solution to its dual
problem in Section 8, and show that the dual problem is of
particular interest to investors who would like to trade stocks
through a broker in a privacy-preserving manner.

1.1 Application to Network Audit Logs

We briefly mentioned network audit logs at the beginning
of this section. Throughout the paper, we will keep using
this example to motivate the design of MRQED. To provide
context for the remainder of the paper, we now describe this
application in greater detail.

Firewalls and network intrusion detection systems (NIDS)
such as Snort [44], Emerald [40], and Bro [39] produce logs
summarizing detected or blocked activities suspected to be
malicious. Log entries typically correspond to either a sin-
gle packet (perhaps rejected by a firewall) or an established
flow deemed suspicious. Each entry normally includes fields
such as source and destination IP address and port, date and

time, protocol (e.g., TCP, UDP, or ICMP), and, in the case
of NIDS, the type of rule causing an alert. Sharing and com-
paring such logs across organizations is a method for gaining
broader information about malicious activities on the Internet
so that administrators may better protect their systems. Cur-
rent large scale efforts to collect and aggregate network au-
dit logs for this purpose include DShield [25], myNetWatch-
man [35], and Deepsight [24].

However, sharing of network audit logs is hampered by the
presence of security and privacy sensitive information. Byen-
crypting each log entry before sending it to another party, the
source can allay these concerns. Later, the source may release
a decryption key for a carefully specified set of log entries
deemed currently relevant. For example, suppose a particular
host with IP addressa1 is determined to have been compro-
mised at timet1 and later involved in scanning other hosts for
vulnerabilities on a certain range of ports[p1, p2]. A trusted
authority may then choose to release a key decrypting any
entries at timet, with source addressa, connecting to portp
such thatt ≥ t1, a = a1, andp1 ≤ p ≤ p2. Note that to avoid
a central point of trust, we can have multiple parties jointly
act as the authority. Using techniques from secure multi-party
computation [27], only when a sufficient number of them col-
laborate, can they generate a valid decryption key. The source
would then have precise guarantees about the privacy of their
network while providing useful information to other individ-
ual organizations or a global monitoring effort. The public
key nature of the scheme would allow distributed, encrypted
submissions to a central monitoring organization possessing
the master private key and giving out decryption keys as nec-
essary. There have been some previous attempts to protect
the security of audit logs through encryption or anonymiza-
tion while allowing limited queries [47, 23, 33], but in no
previous scheme has it been possible to issue keys for con-
junctions of ranges over multiple attributes while maintaining
the secrecy of the attributes. In particular, we are not aware of
any previous method supporting queries such as our example
of (t≥ t1) ∧ (a=a1) ∧ (p1≤ p≤ p2) that does not require
either revealing the attribute values or issuing an exponential
number of key components.

1.2 Other Applications

Apart from the network audit log application, and the
stock-trading application described in Section 8, we men-
tion here some other potentially interesting applicationsof
MRQED.

Financial audit logs. Financial audit logs contain sensi-
tive information about financial transactions. Our MRQED



scheme allows financial institutions to release audit logs in
encrypted format. When necessary, an authorized auditor can
obtain a decryption key from a trusted authority. With this
decryption key, the auditor can decrypt certain transactions
that may be suspected of fraudulent activities. However, the
privacy of all other transactions are preserved.

Medical privacy. Consider a health monitoring program.
When Alice moves about in her daily life, a PDA or smart-
phone she carries automatically deposits encrypted crumbsof
her trajectory at a storage server. Assume that each crumb is
of the form ((x, y, t), ct), where(x, y) represents the loca-
tion, t represents time, andct is Alice’s contact information.
During an outbreak of an epidemic, Alice wishes to be alerted
if she was present at a site borne with the disease during an
incubation period, i.e., if(x, y, t) falls within a certain range.
However, she is also concerned with privacy, and she does not
wish to leak her trajectory if she has not been to a site borne
with the disease.

Untrusted remote storage. Individual users may wish to
store emails and files on a remote server, but because the stor-
age server is untrusted, the content must be encrypted before
it is stored at the remote server. Emails and files can be clas-
sified with multi-dimensional attributes. Users may wish to
perform range queries and retrieve only data that satisfy the
queries.

Using biometrics in anonymous IBE.The MRQED scheme
can also be used in biometric-based Anonymous Identity-
Based Encryption (AIBE). Using biometrics in identity-based
encryption first appeared in the work by Sahai and Wa-
ters [41]. In this application, a person’s biometric features
such as finger-prints, blood-type, year of birth, eye color,etc.,
are encoded as a pointX in a multi-dimensional lattice. Per-
sonal data is encrypted using the owner’s biometric features
as the identity, and the encryption protects both the secrecy
of the personal data and the owner’s biometric identity. Due
to potential noise each time a person’s biometric features are
sampled, a user holding the private key for biometric identity
X should be allowed to decrypt data encrypted underX′, iff
X′ andX have small distance. In particular, the SahaiWa-
ters04 construction [41] considered theset-overlapdistance
(or theHammingdistance); and their encryption scheme does
not hide the identity of the user. Our construction allows a
user with the private key for identityX, to decrypt an en-
try encrypted underX′, iff ℓ∞(X,X′) ≤ ǫ. Hereℓ∞ de-
notes theℓ∞ distance betweenX andX′, and is defined as
max{|x1 − x′

1| , . . . , |xD − x′
D|}. In this case, the decryp-

tion region is a hyper-cube in multi-dimensional space. One
can also associate a different weight to each dimension, in
which case the decryption region becomes a hyper-rectangle.

2 Related Work

Search on encrypted data.The problem of search on en-
crypted data (SoE) was introduced in the symmetric key set-
ting by Song et al. [45] and has had some recent improve-
ments in security definitions and efficiency [21]. Boneh

et al. [10] later proposed Public Key Encryption with Key-
word Search (PEKS), in which any party possessing the pub-
lic key can encrypt and the owner of the corresponding pri-
vate key can generate keyword search capabilities. Both
SoE and PEKS can be trivially extended to support one-
dimensional range queries; the extension is similar to the
MRQED1 scheme described in Section 4.2. However, it is
not clear that either can be used to construct a scheme sup-
porting range queries over multiple attributes. Recent work
on traitor-tracing systems [14, 12] allows a more specialized
sort of range query. Given a ciphertextC with attributes
X = (x1, x2, . . . , xD), a master key owner can issue a token
for some valuex′ that allow us to decide whetherxd ≤ x′ for
all 1 ≤ d ≤ D with O(

√
T ) ciphertext size and token size.

Applications of searchable encryption have been studied by
the database community [30, 22, 2]. Other works related to
searches on encrypted data include oblivious RAMs [37, 28],
and private stream searching [5, 38].

IBE. The notion of Identity-Based Encryption (IBE) was in-
troduced by Shamir [42]. Several IBE schemes [20, 11, 7, 6,
18, 46, 36], hierarchical IBE (HIBE) schemes [31, 26, 8, 48],
and applications [41, 29] were proposed since then. In par-
ticular, the HIBE scheme proposed by Boneh, Boyen, and
Goh [8] can be extended to multiple dimensions (M-HIBE)
efficiently and in a collusion-resistant1 manner. The resulting
scheme can be used to solve a problem similar to MRQED,
but lacking the third property in the previous discussion. That
is, when using M-HIBE it would not be possible to hide the
attribute values associated with a ciphertext.

Anonymous IBE. Recently, researchers have proposed
anonymous IBE and HIBE schemes (AIBE, AHIBE) [15, 1].
The notion of anonymity is also related to key privacy [4, 3].
Like the HIBE scheme mentioned above, the AHIBE scheme
of Boyen and Waters [15] can be extended to multiple dimen-
sions in a collusion-resistant manner, resulting in a Multi-
dimensional AHIBE (M-AHIBE) scheme. An M-AHIBE
scheme could be used to implement MRQED (including the
third property), but applying it directly would have a serious
drawback. Because the encryption is anonymous and hides
the attributes used as the public key, at time of decryption
one would need to try all possible decryption keys on a given
ciphertext. This incursO(TD) decryption cost on a single
ciphertext, whereT is the number of possible values each
attribute may assume and may be quite large. Nevertheless,
on a technical level, this AHIBE scheme and its extension to
M-AHIBE are the most closely related work to ours. In par-
ticular, we prevent collusion in the same way the M-AHIBE
construction does. Since we do not require the key delegation
property of HIBE schemes, however, we are able to improve
decryption cost to be logarithmic inT .

Recent developments.Concurrent to our work, Boneh and
Waters [13] propose another construction (BonehWaters06
in Table 1) for complex queries over encrypted data. They
propose a primitive called Hidden Vector Encryption, and

1Collusion-resistance, in this sense, means that two partieswho have been
issued different decryption keys cannot combine their keys in some way to
allow decryption of ciphertexts that neither could decryptpreviously.



use it in conjunctive range and subset queries. When ap-
plied to multi-dimensional range query, their scheme results
in O(DT ) encryption time, ciphertext size, and public key
size, andO(D) decryption key size and decryption cost. As
in Table 1,D andT are the number of attributes and the num-
ber of discrete values for each attribute. Their scheme is more
expensive in terms of public key size, encryption cost and ci-
phertext size; but saves on decryption key size and decryption
cost. In applications with largeT and smallD (e.g., net-
work audit logs, and the stock trading application mentioned
in Section 8), our approach is more appropriate. In particu-
lar, for network audit logs,T = 232 for an IP address, and
D may range from2 to 4. In other applications whereD
is large andT is small, the BonehWaters06 construction is
more appropriate. We also would like to note that the Bone-
hWaters06 construction achieves a stronger notion of secu-
rity. Their construction hides the attribute values, even when
the message is successfully decrypted. This stronger secu-
rity property is a key difference from our construction, in
which the attribute values are revealed upon successful de-
cryption. In Section 3, we name these two different security
modelsmatch-concealingsecurity andmatch-revealingsecu-
rity respectively. For applications like encrypted network au-
dit logs, it is acceptable to reveal the attributes of a message
when it is successfully decrypted. By relaxing the security
definition to allow this possibility, we achieveO(D log T )
encryption time, ciphertext size, and public key size. This
makes applications such as the encrypted network audit logs
possible. However, one may conceive of other applications
where the stronger security notion is necessary.

3 Problem Definition and Preliminary

3.1 Problem Definition

In the network audit log application, a gateway encrypts
network flows, and submits them to an untrusted repository.
When necessary, an auditor may ask an authority for a key
that allows the decryption of all flows whose attributes fall
within a certain range; while the privacy of all irrelevant flows
are still preserved. There is a geometric interpretation tothese
multi-attribute range queries. Suppose that we would like to
allow queries on these three fields: time-stampt, source ad-
dressa, and destination portp. The tuple(t, a, p) can be re-
garded as a pointX in multi-dimensional space. Now sup-
pose we query for all flows whoset, a, p falls within some
range: t ∈ [t1, t2], a ∈ [a1, a2] and p ∈ [p1, p2]. Here
the “hyper-range”[t1, t2]× [a1, a2]× [p1, p2] forms a hyper-
rectangleB in space. The above range query is equivalent to
testing whether a pointX falls inside the hyper-rectangleB.

We now formally define these notions mentioned above.
Assume that an attribute can be encoded using discrete inte-
ger values1 throughT . For example, an IP address can be
encoded using integers1 through232. We use the notation
[T ] to denote integers from1 to T , i.e., [T ] = {1, 2, . . . , T}.
Let S ≤ T be integers, we use[S, T ] to denote integers from
S to T inclusive, i.e.,[S, T ] = {S, S + 1, . . . , T}. Through-
out this paper, we assume thatT is a power of 2, and denote

log2 as simplylog. Suppose that we would like to support
range queries onD different attributes, each of them can take
on values in[T1], [T2], . . . , [TD] respectively. We formally
define aD-dimensional lattice, points and hyper-rectangles
below.

Definition 1 (D-dimensional lattice, point, hyper-rectan-
gle). Let ∆ = (T1, T2, . . . , TD). L∆ = [T1] × [T2] ×
. . . × [TD] defines aD-dimensional lattice. A D-tuple
X = (x1, x2, . . . , xD) defines apoint in L∆, wherexd ∈
[Td](∀d ∈ [D]). A hyper-rectangle B in L∆ is defined
as B(s1, t1, s2, t2, . . . , sD, tD) = {(x1, x2, . . . , xD)

∣∣∀d ∈
[D], xd ∈ [sd, td]} (∀d ∈ [D], 1 ≤ sd ≤ td ≤ Td).

A MRQED scheme consists of four (random-
ized) polynomial-time algorithms: Setup, Encrypt,
DeriveKey and QueryDecrypt. In the network audit
log example, an authority runsSetup to generate public
parameters and a master private key; a gateway runs the
Encrypt algorithm to encrypt a flow. Encryption is
performed on a pair(Msg,X). The messageMsg is an
arbitrary string, andX is a point in multi-dimensional space,
representing the attributes. For example, suppose that we
would like to support queries on the following three attributes
of a flow: time-stampt, source addressa, and destination
port p. The tuple(t, a, p) then becomes the pointX, and the
entire flow summary forms the messageMsg. Whenever
necessary, the authority can run theDeriveKey algorithm,
and compute a decryption key allowing the decryption of
flows whose attributes fall within a certain range. Given
this decryption key, an auditor runs theQueryDecrypt

algorithm over the encrypted data to decrypt the relevant
flows. We now formally define MRQED.

Definition 2 (MRQED). An Multi-dimensional Range Query
over Encrypted Data (MRQED) scheme consists of the fol-
lowing polynomial-time randomized algorithms.

1. Setup(Σ, L∆): Takes a security parameterΣ andD-
dimensional latticeL∆ and outputs public keyPK and
master private keySK.

2. Encrypt(PK,X,Msg): Takes a public keyPK, a
point X, and a messageMsg from the message space
M and outputs a ciphertextC.

3. DeriveKey(PK,SK,B): Takes a public keyPK, a
master private keySK, and a hyper-rectangleB and out-
puts decryption key for hyper-rectangleB.

4. QueryDecrypt(PK,DK,C): Takes a public key
PK, a decryption keyDK, and a ciphertextC and out-
puts either a plaintextMsg or ⊥, signaling decryption
failure.

For each messageMsg ∈ M, hyper-rectangleB ⊆ L∆,
and pointX ∈ L∆, the above algorithms must satisfy the
following consistency constraints:

QueryDecrypt(PK,DK,C) =

{
Msg if X ∈ B

⊥ w.h.p., ifX /∈ B

(1)
where C = Encrypt(PK,X,Msg) and DK =
DeriveKey(PK,SK,B).



3.2 Security Definitions

Suppose that during time[t1, t2], there is an outbreak of a
worm characteristic by the port numberp1. Now the trusted
authority issues a key for the ranget ∈ [t1, t2] andp = p1

to a research group who has been asked to study the worm
behavior. With this key, the research group should be able
to decrypt only flows whose time-stamp and port number
fall within the given range. The privacy of all other flows
should still be preserved. Informally, suppose that a com-
putationally bounded adversary has obtained decryption keys
for regionsB0,B1, . . . ,Bq. Now given a ciphertextC =
Encrypt(PK,X,Msg) such thatX /∈ B0,B1, . . . ,Bq,
the adversary cannot learnX or Msg from C. Of course,
since the adversary fails to decryptC using keys for regions
B0,B1, . . . ,Bq, the adversary inevitably learns that the point
X encrypted does not fall within these regions. But apart
from this fact, the adversary cannot learn more information
aboutX or Msg.

We now formalize this intuition into aselective security
game for MRQED. Here, the selective security notion is sim-
ilar to the selective-ID security for IBE schemes [16, 17, 6].
We prove the security of our construction in the selective
model. A stronger security notion is adaptive security, where
the adversary does not have to commit to two points in the
Init stage of the security game defined below. In the technical
report version [43], we give a formal definition for adaptive
security, and state how it is related to the selective security
model.

Definition 3 (MR-selective security). An MRQED scheme is
selectively secure in the match-revealing (MR) model if all
polynomial-time adversaries have at most a negligible advan-
tage in the selective security game defined below.

• Init : The adversary submits two pointsX∗
0,X

∗
1 ∈ L∆

where it wishes to be challenged.
• Setup: The challenger runs theSetup(Σ, L∆) algo-

rithm to generatePK, SK. It givesPK to the adver-
sary, keepingSK secret.

• Phase 1: The adversary adaptively issues decryption
key queries for hyper-rectanglesB1,B2, . . . ,Bq0

. Fur-
thermore,X∗

0 andX∗
1 are not contained in any hyper-

rectangles queried in this phase, i.e., for0 < i ≤ q0,
X∗

0 /∈ Bi, andX∗
1 /∈ Bi.

• Challenge: The adversary submits two equal length
messagesMsg0,Msg1 ∈ M. The challenger flips a
random coin,b, and encryptsMsgb underX∗

b . The ci-
phertext is passed to the adversary.

• Phase 2: Phase 1 is repeated. The adversary adap-
tively issues decryption key queries for hyper-rectangles
Bq0+1,Bq0+2, . . . ,Bq. As before, all hyper-rectangles
queried in this stage must not containX∗

0 andX∗
1.

• Guess: The adversary outputs a guessb′ of b.

An adversaryA’s advantage in the above game is defined
asAdvA(Σ) =

∣∣Pr[b = b′]− 1
2

∣∣.

We would like to note that a stronger notion of security
is possible as defined by Boneh and Waters in their concur-
rent work [13]. We call this stronger security notionmatch-
concealing (MC) security, since it requires that the attribute
values (i.e., the pointX) remain hidden even when an entry
matches a query. MC-selective security can be formally de-
fined through the following game between an adversary and
a challenger.

Definition 4 (MC-selective security [13]). An MRQED
scheme isselectively secure in the match-concealing (MC)
model if all polynomial-time adversaries have at most a neg-
ligible advantage in the selective security game defined be-
low.

• Init : The adversary submits two pointsX∗
0,X

∗
1 ∈ L∆

where it wishes to be challenged.
• Setup: The challenger runs theSetup(Σ, L∆) algo-

rithm to generatePK, SK. It givesPK to the adver-
sary, keepingSK secret.

• Phase 1: The adversary adaptively issues decryption
key queries for hyper-rectanglesB1,B2, . . . ,Bq0

, sat-
isfying the condition that for all0 < i ≤ q0, either
(X∗

0 ∈ Bi) ∧ (X∗
1 ∈ Bi), or (X∗

0 /∈ Bi) ∧ (X∗
1 /∈ Bi).

• Challenge: The adversary submits two equal length
messagesMsg0,Msg1 ∈ M. If in Phase 1, there ex-
ists some0 < i ≤ q0 such that(X∗

0 ∈ Bi)∧(X∗
1 ∈ Bi),

thenMsg0 = Msg1. The challenger flips a random
coin,b, and encryptsMsgb underX∗

b . The ciphertext is
passed to the adversary.

• Phase 2: Phase 1 is repeated. The adversary adap-
tively issues decryption key queries for hyper-rectangles
Bq0+1,Bq0+2, . . . ,Bq, satisfying the condition that for
all q0 < i ≤ q, either(X∗

0 ∈ Bi) ∧ (X∗
1 ∈ Bi), or

(X∗
0 /∈ Bi) ∧ (X∗

1 /∈ Bi). In addition, if in the Chal-
lenge stage,Msg0 6= Msg1, then for allq0 < i ≤ q,
(X∗

0 /∈ Bi) ∧ (X∗
1 /∈ Bi).

• Guess: The adversary outputs a guessb′ of b.

Likewise, an adversaryA’s advantage in the above game is
defined asAdvA(Σ) =

∣∣Pr[b = b′]− 1
2

∣∣.
In this paper, we use the MR security model, i.e., we do

not protect the privacy of the attributes if an entry is matched
by the query. This security notion suffices for applications
such as network audit logs, and the stock-trading application
as described in Section 8.

3.3 Preliminary: Bilinear Groups

A pairing is an efficiently computable, non-degenerate
function,e : G × Ĝ → G′, satisfying the bilinear property
that e(gr, ĝs) = e(g, ĝ)rs. G, Ĝ andG′ are all groups of
prime order. g, ĝ and e(g, ĝ) are generators ofG, Ĝ and
G′ respectively. Although our MRQED scheme can be con-
structed using asymmetric pairing, for simplicity, we describe
our scheme using symmetric pairing in the remainder of the
paper, i.e.,G = Ĝ.



We name a tupleG = [p, G, G′, g, e] a bilinear instance,
whereG andG′ are two cyclic groups of prime orderp. We
assume an efficient generation algorithm that on input of a

security parameterΣ, outputsG
R← Gen(Σ) wherelog2 p =

Θ(Σ).
We rely on the following complexity assumptions:

Decision BDH Assumption: The Decision Bilinear DH as-
sumption, first used by Joux [32], later used by IBE sys-
tems [11], posits the hardness of the following problem:
Given [g, gz1 , gz2 , gz3 , Z] ∈ G4 × G′, where exponents
z1, z2, z3 are picked at random fromZp, decide whether
Z = e(g, g)z1z2z3 .

Decision Linear Assumption: The Decision Linear assump-
tion, first proposed by Boneh, Boyen and Shacham for group
signatures [9], posits the hardness of the following problem:
Given [g, gz1 , gz2 , gz1z3 , gz2z4 , Z] ∈ G6, wherez1, z2, z3, z4

are picked at random fromZp, decide whetherZ = gz3+z4 .

4 A First Step towards MRQED

In this section, we first show a trivial construction for
MRQED which hasO(T 2D) public key size,O(T 2D) en-
cryption cost and ciphertext size,O(1) decryption key size
and decryption cost. Then in Section 4.2, we show that using
AIBE, we can obtain an improved one-dimension MRQED
scheme. Henceforth, we refer to a one-dimension MRQED
scheme as MRQED1 and refer to multi-dimension MRQED
as MRQEDD. The AIBE-based MRQED1 construction has
O(1) public key size,O(log T ) encryption cost, ciphertext
size, decryption key size and decryption cost. While de-
scribing the AIBE-based MRQED1 construction, we intro-
duce some primitives and notations that will later be used
in our main construction in Section 5. In Section 4.3, we
demonstrate that a straightforward extension of the AIBE-
based MRQED1 scheme into multiple dimensions results in
O

(
(log T )D

)
encryption cost, ciphertext size, decryption key

size and decryption cost. The AIBE-based MRQED1 con-
struction aids the understanding of our main construction in
Section 5. By contrast, details of the AIBE-based MRQEDD

scheme are not crucial towards the understanding of our main
construction. Therefore, we only highlight a few important
definitions and give a sketch of the scheme in Section 4.3. We
give the detailed description of the AIBE-based MRQEDD

scheme in the technical report version [43].

4.1 Trivial Construction

We first give a trivial construction for one-dimensional
range query over encrypted data. We refer to one-dimensional
range query over encrypted data as MRQED1 where the su-
perscript represents the number of dimensions.

In the trivial MRQED1 construction, we make use of
any secure public key encryption scheme. We first generate
O(T 2) public-private key pairs, one for each range[s, t] ⊆
[1, T ]. To encrypt a messageMsg under a pointx, we pro-
duceO(T 2) ciphertexts, one for each range[s, t] ⊆ [1, T ].
In particular, ifx ∈ [s, t], we encryptMsg with public key

pks,t; otherwise, we encrypt an invalid message⊥ with pks,t.
The decryption key for any range[s, t] is thensks,t, the pri-
vate key for[s, t]. In the technical report version [43], we give
a formal description of this trivial construction.

One can extend this idea into multiple dimensions.
The resulting MRQEDD scheme requires that one encrypt
δB(Msg,X) for all hyper-rectanglesB in space. Therefore,
the trivial MRQEDD scheme hasO(T 2D) public key size,
O(T 2D) encryption cost and ciphertext size,O(1) decryption
key size andO(1) decryption cost.

4.2 Improved MRQED1 Construction
Based on AIBE

We show an improved MRQED construction based on
Anonymous Identity-Based Encryption (AIBE). For clarity,
we first explain the construction for one dimension. We call
the scheme MRQED1 where the superscript denotes the num-
ber of dimensions. We note that the primitives and notations
introduced in this section will be used in our main construc-
tion.

4.2.1 Primitives: Efficient Representation of Ranges

To represent ranges efficiently, we build a binary interval tree
over integers1 throughT .

Definition 5 (Interval tree). Let tr(T ) denote a binary inter-
val tree over integers from1 to T . Each node in the tree has a
pre-assigned uniqueID. For convenience, we definetr(T ) to
be the set of all nodeIDs in the tree. Each node intr(T ) rep-
resents a range. Letcv(ID) denote the range represented by
nodeID ∈ tr(T ). Definecv(ID) as the following: LetID
be theith leaf node, thencv(ID) = i. Otherwise, whenID
is an internal node, letID1 andID2 denote its child nodes,
thencv(ID) = cv(ID1)∪ cv(ID2). In other words,cv(ID)
is the set of integers that correspond to the leaf descendants
of ID.

Given the interval treetr(T ), we define theP(x) of IDs
covering a pointx ∈ [1, T ], and the setΛ(x) of IDs repre-
senting a range[s, t] ⊆ [1, T ].

• Set of IDs covering a pointx. For a pointx ∈ [1, T ]
and some nodeID ∈ tr(T ), we say thatID covers
the point x if x ∈ cv(ID). Define P(x) to be the
set ofIDs covering pointx. Clearly, P(x) is the col-
lection of nodes on the path from the root to the leaf
node representingx. As an example, in Figure 1 (a),
P(x) = {ID1, ID2, ID3, ID4}.

• Range as a collection ofIDs. A range[s, t] ⊆ [1, T ]
is represented by a collection of nodes:Λ(s, t) ⊆ tr(T ).
We defineΛ(s, t) to be the smallest of all subsetsV ⊆
tr(T ) such that

⋃
ID∈V

cv(ID) = [s, t]. It is not hard
to see that for any[s, t] ⊆ [1, T ], Λ(s, t) is uniquely
defined, and its size|Λ(s, t)| is at mostO(log T ).

We will make use of the following properties in our AIBE-
based construction: Ifx ∈ [s, t], thenP(x) ∩ Λ(s, t) 6= ∅; in
addition,P(x) andΛ(s, t) intersect at only one node. Other-
wise, if x /∈ [s, t], thenP(x) ∩ Λ(s, t) = ∅.
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Figure 1. An MRQED1 scheme. (a) Path from the leaf node representingx ∈ [T ] to the root. P(x) = {ID1, ID2, ID3, ID4}.
(b) Encryption under the pointx = 3 and the keys released for the range[3, 7].

4.2.2 AIBE-Based MRQED1 Scheme

AIBE encrypts a messageMsg using an identityID as the
public key. Given the private key forID, one can success-
fully decrypt all messages encrypted by identityID. The
encryption scheme protects both the secrecy of the message
Msg and the identityID in the following sense: Given ci-
phertextC, which is an encryption ofMsg by identityID0,
and given decryption keys for identitiesID1, ID2, . . . , IDq

but not forID0, a computationally bounded adversary cannot
learn anything aboutMsg or aboutID0 from the ciphertext
C. Researchers have successfully constructed secure AIBE
schemes [15, 1] withO(1) cost in all respects: in public pa-
rameter size, encryption cost, ciphertext size, decryption key
size and decryption cost.

Given a secure AIBE scheme, we can construct an
MRQED1 scheme based on the following intuition. To en-
crypt the messageMsg under pointx, we encryptMsg un-
der allIDs inP(x). To release the decryption key for a range
[s, t] ⊆ [1, T ], we release the keys for allIDs in Λ(s, t).
Now if x ∈ [s, t], thenP(x)∩Λ(s, t) 6= ∅. SupposeP(x) and
Λ(s, t) intersect at nodeID. Then we can apply the decryp-
tion key atID to the ciphertext encrypted underID, and ob-
tain the plaintext messageMsg. Otherwise, ifx /∈ [s, t], then
P(x)∩Λ(s, t) = ∅. In this case, the security of the underlying
AIBE scheme ensures that a computationally bounded adver-
sary cannot learn any information about the messageMsg

or the pointx, except for the obvious fact (since decryption
fails) thatx /∈ [s, t].

Example. In Figure 1(b), we show a ciphertextC en-
crypted under the pointx. Let L = O(log T ) denote the
height of the tree,C is composed ofO(log T ) components:
{c1, c2, . . . , cL}. On the right, we show the decryption keys
for the range[3, 7]. Since[3, 7] can be represented by the set
of nodesΛ(3, 7) = {IDA, IDB , IDC}, the decryption key
for [3, 7] consists of three sub-keys,kIDA

, kIDB
andkIDC

.
The AIBE-based construction hasO(1) public key

size, O(|P(x)|) encryption cost and ciphertext size, and
O(|Λ(s, t)|) decryption key size. Since|P(x)| = O(log T ),
and |Λ(s, t)| = O(log T ), we getO(log T ) in encryption
cost, ciphertext size, and decryption key size. Later, we will
show that decryption can be done inO(log T ) time as well.

Stated more formally, given a secure AIBE scheme

[
Setup∗(Σ), DeriveKey∗(PK,SK, ID),
Encrypt∗(PK, ID,Msg), Decrypt∗(PK,DK,C)

]
,

one can construct a secure MRQED1 scheme as below:

• Setup(Σ,T) calls Setup∗(Σ) and outputsPK and
SK.

• Encrypt(PK,x,Msg) encrypts the messageMsg

under everyID ∈ P(x). In other words,Encrypt

yields C =
{
cID

∣∣ID ∈ P(x)
}

, where cID =

Encrypt∗(PK, ID,Msg||0m′

). To check whether a
decryption is valid, prior to encryption, we appendm′

trailing 0s denoted0m′

to messageMsg ∈ {0, 1}m.
• DeriveKey(PK,SK, [s, t]) releases a decryption key

kID for each ID ∈ Λ(s, t). kID is computed as
kID = DeriveKey∗(PK,SK, ID). The entire de-
cryption key for the range[s, t] is then the setDKs,t ={
kID

∣∣ ID ∈ Λ(s, t)
}

.
• QueryDecrypt(PK,DK,C) tries each keykID ∈

DKs,t on each ciphertextcID′ ∈ C. If ID = ID′, then
Decrypt∗(PK, kID, cID′) yields result of the form
M̂SG||0m′

. In this case, we accept the result and exit
theQueryDecrypt algorithm. If all trials fail to yield
result of the formM̂SG||0m′

, QueryDecrypt out-
puts⊥, indicating failure to decrypt.

Note that in the AIBE-based construction, if we simply
try all decryption keys over all ciphertexts, then decryption
would requireO(|P(x)| · |Λ(s, t)|) time; and since|P(x)| =
O(log T ), |Λ(s, t)| = O(log T ), decryption would require
O(log2 T ) time. However, observe that it is not necessary
to try kID on cID′ , if ID andID′ are at different depth in
the tree; since then,ID andID′ cannot be equal. Thus we
only need to trykID on cID′ if ID andID′ are at the same
depth in the tree, which requires knowledge of the depth of
ID′ for ciphertextcID′ . Of course, we cannot directly re-
leaseID′ for ciphertextcID′ , since the encryption is meant
to hideID′. However, since each ciphertextC has a portion
at every depth of the tree, we can give out the depth ofID′ for
eachcID′ ∈ C without leaking any information aboutID′.
In this way, we reduce the decryption cost toO(log T ) rather
thanO(log2 T ).

We emphasize that using AIBE as the underlying encryp-
tion scheme is crucial to ensuring the security of the de-
rived MRQED1 scheme. In particular, a non-anonymous IBE
scheme is not suitable to use as the underlying encryption
scheme, since IBE hides only the messageMsg but not the
attributex.



4.3 AIBE-Based MRQEDD Construction

The same idea can be applied to construct an MRQEDD

scheme, resulting inO(1) public key size,O
(
(log T )D

)
en-

cryption cost, ciphertext size, decryption key size, and de-
cryption cost. Since the details of this construction is notcru-
cial to the understanding of our main construction, we only
give a sketch here and leave the full description of the scheme
to the technical report version [43]. However, we highlight
a few important definitions here, including the notion of a
simple hyper-rectangle, and the definition ofΛ×(B). These
definitions will later be used in our main construction.

We buildD binary interval trees, one for each dimension.
We assign a globally uniqueID to each node in theD trees.

Representing a hyper-rectangle.We represent an arbitrary
hyper-rectangle as a collection ofsimple hyper-rectangles.
To illustrate this idea, we first give a formal definition of
a simple hyper-rectangle, and then state how to represent
an arbitrary hyper-rectangle as a collection of simple hyper-
rectangles. Simply put, a simple hyper-rectangle is a hyper-
rectangleB0 in space, such thatB0 can be represented by
a single node in the tree of every dimension. More specif-
ically, a hyper-rectangleB(s1, t1, . . . , sD, tD) in space is
composed of a range along each dimension. If for all1 ≤
d ≤ D, |Λ(sd, td)| = 1, i.e., [sd, td] is a simple range
in the dth dimension, then we say that the hyper-rectangle
B(s1, t1, . . . , sD, tD) is asimple hyper-rectangle. A simple
hyper-rectangle can be defined by a single node from each
dimension. We can assign a unique identity to each simple-
rectangleB0(s1, t1, . . . , sD, tD) in space. Define

idB0
= (ID1, ID2, . . . , IDD) ,

whereIDd(1 ≤ i ≤ D) is the node representing[sd, td] in
thedth dimension.

Definition 6 (Hyper-rectangle as a collection of sim-
ple hyper-rectangles). Given an hyper-rectangle
B(s1, t1, . . . , sD, tD), denote Λd(B) := Λ(sd, td) for
d ∈ [D]. Λ(B) is the collection of nodes representing
range [sd, td] in the dth dimension. The hyper-rectangle
B can be represented as a collectionΛ×(B) of simple
hyper-rectangles:

Λ×(B) = Λ1(B)× Λ2(B)× . . .× ΛD(B)

In particular, for everyid ∈ Λ×(B), id is a vector of the form
(ID1, ID2, . . . , IDD), whereIDd (d ∈ [D]) is a node in
the tree corresponding to thedth dimension. Therefore,id
uniquely specifies a simple hyper-rectangleB0 in space.

Clearly, |Λ×(B)| = O
(
(log T )D

)
; in addition, Λ×(B)

can be efficiently computed. Given the above definitions,
we briefly describe the AIBE-based MRQEDD construction.
The detailed description is provided the technical report ver-
sion [43].

Encryption. Suppose that now we would like to encrypt a
messageMsg and the pointX = (x1, x2, . . . , xD). We
encrypt the messageMsg under all simple hyper-rectangles

that contain the pointX = (x1, x2, . . . , xD). This is equiv-
alent to encryptingMsg under the cross-product ofD dif-
ferent paths to the root. Specifically, ford ∈ [D], denote
Pd(X) := P(xd). Pd(X) is the path from the root to the
leaf node representingxd in the dth dimension. Define the
cross-product of allD different paths to the root:

P×(X) = P1(X)× P2(X)× . . .× PD(X).

Then, to encryptMsg and X, we use AIBE to en-
crypt Msg under everyid ∈ P×(X). Since |P×(X)| =
O

(
(log T )D

)
, both encryption cost and ciphertext size are

O
(
(log T )D

)
.

Key derivation and decryption. To issue decryption keys
for a hyper-rectangleB, we issue a key for everyid ∈
Λ×(B). Since |Λ×(B)| = O

(
(log T )D

)
, the decryption

key has sizeO
(
(log T )D

)
. Now if X ∈ B, thenP×(X) ∩

Λ×(B) 6= ∅; in addition,P×(X) andΛ×(B) intersect at ex-
actly one simple hyper-rectangleidB0

, where the keys and the
ciphertexts overlap. In this case, we use the key foridB0

to
decrypt the ciphertext foridB0

. Otherwise, ifX /∈ B, then
P×(X) ∩ Λ×(B) = ∅. In this case, the security of the under-
lying AIBE schemes ensures the security of the MRQEDD

constructions. In the technical report version [43], we show
that the cost of decryption is alsoO

(
(log T )D

)
.

5 Our MRQED D Construction

In Section 4, we showed an AIBE-based MRQEDD con-
struction withO(1) public key size,O

(
(log T )D

)
encryp-

tion cost and ciphertext size,O
(
(log T )D

)
decryption key

size and decryption cost. In this section, we propose a new
MRQEDD construction withO (D log T ) public key size,
O (D log T ) encryption cost and ciphertext size,O (D log T )
decryption key size, andO

(
(log T )D

)
decryption cost.

5.1 Intuition

We buildD interval trees over integers from1 to T , each
representing a separate dimension. Assume each tree node
has a globally uniqueID. In the previous section, we showed
a naive construction for MRQEDD based on AIBE. The naive
construction encryptsMsg under theO((log T )D) simple
hyper-rectangles that contain the pointX; and releases de-
cryption keys for theO((log T )D) simple hyper-rectangles
that compose a hyper-rectangleB. Our goal is to reduce
the ciphertext size and decryption key size toO(D log T ) in-
stead. However, as we will soon explain, naively doing this
introduces thecollusion attackas shown in Figure 2 (b). Our
main technical challenge, therefore, is to devise ways to se-
cure against the collusion attack.

Reducing the ciphertext size.In other words, rather than en-
cryptionMsg for each simple hyper-rectangle inP×(X) =
P1(X) × . . . × PD(X), we would like to encryptMsg for
each tree node in the the union of theseD different paths:

P∪(X) = P1(X) ∪ . . . ∪ PD(X).
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Figure 2. An MRQED2 scheme.(a) Encryption under the pointx = (3, 5) and the keys released for the range[2, 6]× [3, 7]. (b) With
decryption keyskx1, ky1 for regionR1 andkx2, ky2 for regionR4, regionsR2 andR3 are compromised.

Reducing the decryption key size.Instead of representing
an arbitrary hyper-rectangle using the collection of simple
hyper-rectangles, we can represent a simple hyper-rectangle
B as the collection of disjoint intervals over different dimen-
sions:

Definition 7 (Hyper-rectangle as a collection of nodes). A
hyper-rectangleB ⊆ L∆ gives a collection of nodes corre-
sponding to disjoint intervals over different dimensions:

Λ∪(B) = Λ1(B) ∪ Λ2(B) ∪ . . . ∪ ΛD(B)

Note that for all hyper-rectangleB ⊆ L∆, |Λ∪(B)| =
O(D log T ); in addition,Λ∪(B) can be computed efficiently.

Using the above definition, rather than releasing keys for
each simple hyper-rectangle inΛ×(B) = Λ1(B) × . . . ×
ΛD(B), we would like to release keys for eachID in
Λ1(B) ∪ . . . ∪ ΛD(B).

Example. Figure 2 (a) is an example in two dimensions. To
encrypt under the point(3, 5), we find the path from the leaf
node3 to the root in the first dimension, and the path from
the leaf node5 to the root in the second dimension. We then
produce a block in the ciphertext corresponding to each node
on the two paths. In the first dimension, we produce blocks
c1, c2, c3 andc4. In the second dimension, we produce blocks
c5, c6, c7 and c8. To release decryption keys for the range
[2, 6] × [3, 7], we find a collectionΛ(2, 6) of nodes covering
the range[2, 6] in the first dimension; and a collectionΛ(3, 7)
of nodes covering[3, 7] in the second dimension. We issue
a block in the decryption key corresponding to each node
in Λ(2, 6) and inΛ(3, 7). In the first dimension, we create
blockskIDA

, kIDB
, andkIDC

; and in the second dimension,
we create blockskIDD

, kIDE
, andkIDF

.

Preventing the collusion attack. Unfortunately, naively
doing the above is equivalent to applying the AIBE-based
MRQED1 scheme independently in each dimension. As we
demonstrate in Figure 2 (b), such a scheme is susceptible to
the collusion attack. Suppose that Figure 2 (b), every rect-
angle is a simple rectangle. Now suppose that an adversary
were given the decryption keys for regionR1 andR4, then

the adversary would have collected keyskR1 = {kx1, ky1},
kR4 = {kx2, ky2}. With these, the adversary would be able
to reconstruct the keys forR2 andR3: kR2 = {kx2, ky1},
kR3 = {kx1, ky2}. Hence, our major challenge is to find
a way to secure against the collusion attack without incur-
ring additional cost. We use abinding technique to prevent
the collusion attack: we use re-randomization to tie together
the sub-keys in different dimensions. For example, in Fig-
ure 2 (b), when we release the decryption key for regionR1,
instead of releasing{kx1, ky1}, we release{µ̃xkx1, µ̃yky1},
where µ̃x and µ̃y are random numbers that we pick each
time we issue a decryption key. Likewise, when releasing
the key for regionR4, we release{µ̃′

xkx2, µ̃
′
yky2}, whereµ̃′

x

andµ̃′
y are two random numbers picked independently from

µ̃x andµ̃y. Of course, in the real construction,µ̃x andµ̃y (
µ̃′

x and µ̃′
y) also need to satisfy certain algebraic properties

(e.g., µ̃xµ̃y = µ̃′
xµ̃′

y = some invariant) to preserve the in-
ternal consistency of our scheme. In this way, components in
the decryption key forR1 cannot be used in combination with
components in the decryption key forR4.

5.2 The Main Construction

We are now ready to describe our construction. Define
L = O(log T ) to represent the height of a tree. Assume
that nodeIDs are picked fromZ∗

p. We append a message

Msg ∈ {0, 1}m with a series of trailing zeros,0m′

, prior to
encryption. Assume that{0, 1}m+m′ ⊆ G′.

Setup(Σ, L∆) To generate public parameters and the mas-
ter private key, the setup algorithm first generates a bilinear

instanceG = [p, G, G′, g, e]
R← Gen(Σ). Then, the setup

algorithm does the following.

1. Select at random the following parameters from
Z8DL+1

p :

ω,
[
αϕ,1, αϕ,2, βϕ,1, βϕ,2, θϕ,1, θϕ,2, θ

′
ϕ,1, θ

′
ϕ,2

]
ϕ=(d,l)
∈[D]×[L]

In addition, we require that theα’s and theβ’s be



forcibly non-zero. At this point, we give a brief expla-
nation of our notation. The variableϕ is used to index a
tuple(d, l) ∈ [D]× [L], whered denotes the dimension
and l denote the depth of a node in the corresponding
tree.

2. PublishG and the following public parametersPK ∈
G′ ×G8DL:

Ω← e(g, g)ω,


aϕ,1 ← gαϕ,1θϕ,1 , aϕ,2 ← gαϕ,2θϕ,2 ,

a′
ϕ,1 ← gαϕ,1θ′

ϕ,1 , a′
ϕ,2 ← gαϕ,2θ′

ϕ,2 ,
bϕ,1 ← gβϕ,1θϕ,1 , bϕ,2 ← gβϕ,2θϕ,2 ,

b′ϕ,1 ← gβϕ,1θ′

ϕ,1 , b′ϕ,2 ← gβϕ,2θ′

ϕ,2 ,




ϕ=(d,l)∈
[D]×[L]

3. Retain a master private keySK ∈ G8DL+1 comprising
the following elements:

ω̃ ← gω,


aϕ,1 ← gαϕ,1 , aϕ,2 ← gαϕ,2 ,
bϕ,1 ← gβϕ,1 , bϕ,2 ← gβϕ,2 ,
yϕ,1 ← gαϕ,1βϕ,1θϕ,1 , yϕ,2 ← gαϕ,2βϕ,2θϕ,2 ,

y′
ϕ,1 ← gαϕ,1βϕ,1θ′

ϕ,1 , y′
ϕ,2 ← gαϕ,2βϕ,2θ′

ϕ,2




ϕ=(d,l)
∈[D]×[L]

Notice that in the public parameters and the master key,
we have different versions of the same variable, e.g.,
aϕ,1, aϕ,2, a

′
ϕ,1, a

′
ϕ,2. Although they seem to be redun-

dant, they are actually need to provide sufficient degrees
of randomness for our proof to go through. The reasons
for having these different versions will become clear
once the reader has gone over the detailed proof pro-
vided in the technical report version [43].

DeriveKey(PK,SK,B) The following steps compute the
decryption key for hyper-rectangleB, given public keyPK

and master private keySK.

1. PickO(D · L) random integers fromGD × Z
2|Λ∪(B)|
p :

[
µ̃d

]
d∈[D]

, [λID,1, λID,2]ID∈Λ∪(B)

such that
∏

d∈[D] µ̃d = ω̃. The reason for having an
overhead tilde for the variablẽµd is to associate it with
the variableω̃, since they both belong to the groupG,
and they satisfy the condition that

∏
d∈[D] µ̃d = ω̃. We

note that the random̃µd’s generated in this stage are later
used to re-randomize the components of the decryption
key. In this way, components in different dimensions
are tied to each other; and components from one decryp-
tion key cannot be used in combination with components
from another decryption key. This is how we prevent the
collusion attack as shown in Figure 2 (b).

2. Compute and release a decryption keyDK ∈
G5|Λ∪(B)|. DK is composed of a portionDK(ID)
for eachID ∈ Λ∪(B). In the following definition for
DK(ID), ϕ = (d, l) = Φ(ID) represents the dimen-
sion and depth of nodeID; without risk of ambiguity,

denoteλ1 = λID,1, λ2 = λID,2. DK(ID) is defined
below:

µ̃d

(
yID

ϕ,1y
′
ϕ,1

)λ1
(
yID

ϕ,2y
′
ϕ,2

)λ2

, a−λ1

ϕ,1 , b−λ1

ϕ,1 , a−λ2

ϕ,2 , b−λ2

ϕ,2

Observe that we release a portion of the decryption key
for each node inΛ∪(B), as opposed to for each hyper-
rectangle inΛ×(B). In this way, the size of the private
key isO(DL), instead ofO(LD). Also observe that we
multiply the first element ofDK(ID) by µ̃d. This illus-
trates thebinding technique used to tie together compo-
nents in different dimensions. In this way, components
in one decryption key cannot be used in combination
with components in another decryption key; therefore,
we successfully prevent the collusion attack.

Encrypt(PK,X,Msg) We create a block in the ciphertext
for everyID ∈ P∪(X). Equivalently, for each dimensiond
and depthl, denoteϕ = (d, l), we create a portion of the ci-
phertext corresponding to the nodeIϕ, residing in thedth tree
at depthl, on the pathPd(X) to the root. We now describe
theEncrypt algorithm in the following steps:

1. Select2DL + 1 random integers: selectr ∈R Zp, select
[rϕ,1, rϕ,2]ϕ=(d,l)∈[D]×[L] ∈R Z2DL

p .

2. Forϕ = (d, l) ∈ [D] × [L], defineIϕ = Iϕ(X), i.e.,
the node at depthl in Pd(X) in thedth dimension. Now
compute and output the following ciphertextC ∈ G′ ×
G4DL+1:

(Msg||0m′

) · Ω−r, gr,[
(bϕ,1

Iϕb′ϕ,1)
rϕ,1

, (aϕ,1
Iϕa′

ϕ,1)
r−rϕ,1 ,

(bϕ,2
Iϕb′ϕ,2)

rϕ,2
, (aϕ,2

Iϕa′
ϕ,2)

r−rϕ,2

]

ϕ=(d,l)∈
[D]×[L]

QueryDecrypt(PK,DK,C) We first give an overview
on howQueryDecrypt works. Recall that a decryption
key DK =

{
DK(ID)

∣∣ ID ∈ Λ∪(B)
}

is composed of a
portion DK(ID) for each ID ∈ Λ∪(B). We now re-
construct a decryption key for each simple hyper-rectangle
idB0

∈ Λ×(B) as below. We grab fromDK a sub-key from
each dimension: for eachd ∈ [D], grab a sub-keyDK(IDd)
from thedth dimension, whereIDd ∈ Λd(B). The collec-
tion of sub-keys{DK(ID1),DK(ID2), . . . ,DK(IDD)}
can now be jointly used to decrypt a message encrypted under
the simple hyper-rectangleidB0

= (ID1, . . . , IDD).
We also need to find the correct blocks in the ciphertext

to apply this key foridB0
. Recall that the ciphertext is of

the formC =
(
c, c0, [cϕ,1, cϕ,2, cϕ,3, cϕ,4]ϕ=(d,l)∈[D]×[L]

)
.

For convenience, denotecϕ := [cϕ,1, cϕ,2, cϕ,3, cϕ,4] for
ϕ = (d, l) ∈ [D] × [L]. cϕ is the block in the ciphertext
corresponding to a node in thedth dimension and at depthl
of the tree. DefineΦ(ID) := (d, l) to extract the dimension
and depth of the nodeID. Now for a sub-keyDK(ID), de-
fine ϕ = Φ(ID), it is not hard to see thatDK(ID) should
be used in combination with the blockcϕ in the ciphertext.



The following algorithm iterates through the simple hyper-
rectangles inΛ×(B) and checks if the ciphertext can de-
crypt to a valid message under each simple hyper-rectangle
in Λ×(B).

For each simple hyper-rectangleΛ×(B0) =
{(ID1, ID2, . . . , IDD)} ⊆ Λ×(B),

(1) LetDK(IDd) = (kIDd,0, kIDd,1, kIDd,2, kIDd,3, kIDd,4)
represent the element inDK for IDd, whered ∈ [D].

(2) Try to decrypt C under B0 with the collection
{DK(ID1),DK(ID2), . . . ,DK(IDD)} of sub-keys:

V ← c ·
∏

d∈[D],
ϕd=Φ(IDd)

[
e(c0, kIDd,0) · e(cϕd,1, kIDd,1)

· e(cϕd,2, kIDd,2) · e(cϕd,3, kIDd,3) · e(cϕd,4, kIDd,4)

]

If V is of the formM̂sg||0m′

, then output̂Msg as the
decrypted plaintext and exit.

If for all simple hyper-rectangles inΛ×(B), the previous step
fails to produce the plaintext, then output⊥.

When done naively, the aboveQueryDecrypt algo-
rithm takesO(D(log T )D) time. However, if one saves in-
termediate results, it can be done inO((log T )D) time with
O(D log T ) storage. The above numbers takes into account
all group operations, include multiplication, exponentiation
and bilinear pairing. However, since a pairing operation is
typically more expensive than exponentiation (and far more
expensive than multiplication) in known bilinear groups, we
are particularly interested in reducing the number of pair-
ings at time of decryption. Notice that we can precompute
all pairings e(c0, kIDd,0) and pairingse(cϕd,i, kIDd,i) for
1 ≤ i ≤ 4, and store the results in a look-up table. There-
fore, the decryption algorithm requiresO(D log T ) pairings
in total.

6 Consistency, Security

The following two theorems state the consistency and se-
curity of our MRQED construction.

Theorem 6.1 (Internal consistency). The above defined
MRQED construction satisfies the consistency requirement
posed by Equation (1).

Theorem 6.2 (Selective security). The above defined
MRQED construction is selectively secure against
polynomial-time adversaries.

Below we give an overview of the techniques used in
the security proof. The detailed proofs of Theorem 6.1 and
Theorem 6.2 are provided in the online technical report ver-
sion [43]. To prove the selective security of our MRQEDD

construction, we decompose the selective MRQED game into
two games: a selective confidentiality game and a selective
anonymity game. By the hybrid argument, if no polynomial-
time adversary has more than negligible advantage in either

the confidentiality game or the anonymity game, then no
polynomial-time adversary has more than negligible advan-
tage in the combined selective MRQED game.

In the proof, we build a simulator that leverages an
MRQED adversary to solve the D-BDH problem or the D-
Linear problem. The simulator inherits parameters specified
by the D-BDH/D-Linear instance, hence, it has incomplete
information about the master key. Therefore, the crux of the
proof is how to simulate the key derivation algorithm with-
out knowing the complete master key. In comparison, the
anonymity proof is more complicated than the confidentiality
proof, because it involves a hybrid argument containing2DL
steps. In step(d1, l1, n1) of the hybrid argument,yϕ1,n1

and
y′

ϕ1,n1
(ϕ1 = (d1, l1)) in the master key contain unknown pa-

rameters inherited from the D-Linear instance. Therefore,we
need to condition on the relative position betweenX∗ and the
(d1, l1) in question. Our proof techniques are similar to that
presented in the AHIBE paper [15].

7 Practical Performance

In this section, we give a detailed analysis of the perfor-
mance of the MRQEDD scheme given in Section 5 in prac-
tical scenarios. We use the conditional release of encrypted
network audit logs as our motivating application.

Assumptions.To evaluate the scheme of Section 5 in this ap-
plication, we detail a set of scenarios regarding the searchable
fields present in the logs. We assume log entries contain the
fields listed in Table 2. The 17-bit time field is sufficient to
distinguish times over a period of about 15 years with a one
hour resolution, or about three months at a one minute resolu-
tion. More precise times may be stored in the non-searchable
portion of the message if desired. The protocol field cor-

Field Abbr. Range Distinct Values
Source IP sip [0, Tsip −1] Tsip = 232

Dest. IP dip [0, Tdip −1] Tdip = 232

Port port [0, Tport −1] Tport = 216

Time time [0, Ttime −1] Ttime = 217

Protocol prot [0, Tprot −1] Tprot = 28

Table 2. Fields appearing in a network audit log and their
possible values.

responds to the actual bits of the corresponding field in an
IP header (where, for example, 6 denotes TCP and 133 de-
notes Fibre Channel). Various subsets of these fields may be
included as searchable attributes in MRQEDD. Other fields
and any additional associated data such as a payload may be
included as the encrypted message. Regardless of message
length, we need only use the MRQEDD scheme to encrypt
a single group element, which may be a randomly generated
symmetric key (e.g., for AES) used to encrypt the message.

Benchmarks for the selected pairing were run on a modern
workstation. The processor was a 64-bit, 3.2 Ghz Pentium 4.
We used the Pairing-Based Cryptography (PBC) library [34],



which is in turn based on the GNU Multiple Precision Arith-
metic Library (GMP). The relevant results are given in Ta-
ble 3. Using these benchmark numbers, we now estimate the
performance of our encryption scheme under several scenar-
ios for the network audit log application.

Operation Time
pairing (no preprocessing) 5.5 ms

pairing (after preprocessing) 2.6 ms
preprocess pairing 5.9 ms

exponentiation inG, bG 6.4 ms
exponentiation inG′ 0.6 ms
multiplication inG′ 5.1µs

Table 3. Group arithmetic and pairing performance bench-
marks on a modern workstation [34].

Public parameters and master key. The space required
to store the public parameters and master key is logarith-
mic with respect to the number of possible attribute val-
ues. Specifically, denote the set of attributes asA =
{sip, dip, port, time, prot}. Then for each attributea ∈ A,
define the height of the treeLa = log2 Ta + 1. For example,
Lsip = 33 andLprot = 9. Then the public parametersPK re-
quire a total of8

∑
a∈A La = 880 elements ofG and one el-

ement ofG′. Assuming 512-bit representations2 of elements
of G andG′, the total size ofPK is 55KB. The master key
SK contains the same number of elements, again requiring
55KB of storage. More space efficient pairings than the one
used in this estimate are available, but this one was selected
for speed of evaluation.

Computation time forSetup is reasonable, given that it
is only run once. Computing the public and private parame-
ters inSetup requires roughly16

∑
a∈A La exponentiations

and one pairing, for a total of about 11.3s. Time spent on
multiplication in this case is negligible.

Encryption. Saving the group elements of a ciphertext re-
quires4

∑
a∈A La + 2 group elements, or 28KB. Note that

we normally just encrypt a session key, so this is a constant
overhead beyond the actual length of the message. Running
Encrypt requires about two exponentiations for each group
element, resulting in a time of about 5.6s. While significant,
this overhead should be acceptable in most cases in the net-
work audit log example. If audit logs are high volume, the
best strategy may be to produce periodic summaries rather
than separately encrypting each packet. The searchable at-
tributes of such summaries would reflect the collection of en-
tries they represent, and the full contents of the entries could
be included as the encrypted message without incurring ad-
ditional overhead. In systems containing a cryptographic ac-
celerator chip supporting ECC (such as some routers), much
higher performance is possible. For example, the Elliptic
Semiconductor CLP-17 could reduce the time of exponentia-

2We consider a type A pairing using the singular curvey2 = x3 + x for
the groupsG and bG with a base field size of 512-bits. Note that all groups
involved have 160-bit group order; the storage requirementsarise from the
specific representation of elements in the elliptic curves.

tion from 6.4ms to 30µs [19], resulting in a total encryption
time as low as 27ms.

Key derivation and decryption. We now consider decryp-
tion keys and the running time of the decryption algorithm,
the more interesting aspects of the scheme’s computational
and storage requirements. The space required to store a de-
cryption key, the time to derive it, and the time to decrypt
using it depend only on the ranges of attributes for which it
permits decryption. Unlike the computational and storage re-
quirements discussed thus far, these costs do not depend on
the full range of possible values, only those associated with
the key. These costs depend on the number of key com-
ponents necessary to represent the permissible range along
each dimension. For example, suppose a particular decryp-
tion keyDK only allows decryption of entries with a desti-
nation port in the range[3, 7] (perhaps placing other require-
ments on the other attributes). Referring back to Figure 1,
we see that three tree nodes are necessary to cover this range,
soDeriveKey would include these three for the destination
port dimension inDK. Similarly, given some decryption key
DK, we denote the number of tree nodes necessary to cover
the decryption range in each of the dimensionsa ∈ A by
Na = |Λa(B)| (using the notation of Section 5). So in this
example,Nport = 3. Note that for anya ∈ A, in the worst
case,Na = 2La − 2.

Now given Na for each a ∈ A, we may com-
pute the decryption costs. A decryption key consists
of 5

∑
a∈A Na group elements andDeriveKey performs

8
∑

a∈A Na exponentiations. The number of operations
necessary to decrypt using a keyDK is slightly more
subtle. While QueryDecrypt is Θ(

∏
a∈A La) (i.e.,

Θ((log T )D)) overall, onlyO(
∑

a∈A La) (i.e., O(D log T ))
pairings are required, as mentioned in Section 5.2. Specif-
ically, we need only compute5

∑
a∈A Na pairings to pop-

ulate a lookup table containing values ofe(c0, kID,0),
e(cϕ,1, kID,1), e(cϕ,2, kID,2), e(cϕ,3, kID,3), e(cϕ,4, kID,4),
and e(cϕ,5, kID,5). These values are enough to complete
the QueryDecrypt algorithm. Assuming a key will nor-
mally be used to decrypt a batch of ciphertexts one after an-
other, we may further reduce the cost of pairings by prepro-
cessing with the key. As shown in Table 3, preprocessing
reduces the pairing time by about half, at a one time cost
(per decryption keyDK) equivalent to one or two decryp-
tions. Computed naively, the sequence of trials in step one of
QueryDecrypt end up requiring a total of|A|∏a∈A Na

multiplications inG′. This can be somewhat reduced. Let
S1, . . . S|A| be {Na | a ∈ A } sorted in ascending order:
S1 ≤ S2 ≤ . . . S|A|. Then by saving intermediate re-
sults between trials and ordering the dimensions appropri-
ately, it is possible to complete step one with a total of
S1 + S1S2 + S1S2S3 + . . . S1S2 · · ·S|A| multiplications.

Specific scenarios.We have now computed the costs associ-
ated with the storage and usage of a decryption key in terms
of Na for a ∈ A, but we have not yet specifiedNa. If we
assume the range for each attribute is randomly selected (uni-
formly), then for eacha ∈ A, the expected value ofNa is
La − 1. This results in a decryption key size of 33KB and



a running time forDeriveKey of 5.4s. The corresponding
worst-case decryption time3 is 13.1s. We note that this is a
major cost, and likely to be inconvenient if significant quan-
tities of log entries must be decrypted. Fortunately, queries
eliciting such long decryption times are not likely to be nec-
essary in practice. In fact, fairly elaborate queries are possible
while keeping decryption costs low.

In Table 4 we provide several examples that help demon-
strate this. The first entry illustrates the fact that specifying a
single value, all values, or a range of values falling on power-
of-two boundaries (as in the case of an IP subnet) for some
attributea results inNa = 1, reducing decryption time dra-
matically. In the next example, several attributes are required
to be in general ranges, or, in the case ofprot, selected from
a small set. This results in larger numbers of key compo-
nents and slightly longer decryption times. Still, the decryp-
tion time in this case is far below the time with each range
randomly selected. As shown by the third example, larger
ranges result in larger values ofNa and, again, somewhat
larger, but still relatively low, decryption times.

8 Extensions and Discussions

8.1 The Dual Problem and Stock Trading
through a Broker

In the MRQED problem, one encrypts a messageMsg un-
der a pointX in multi-dimensional space, and given a hyper-
rectangleB, the master key owner can construct a capability,
allowing an auditor to decrypt all entries satisfyingX ∈ B.
On the other hand, the privacy of the irrelevant entries are still
preserved.

Informally, the natural dual problem to MRQED is where
one encrypts under a hyper-rectangleB, and given a point
X, the master key owner can construct a capability allowing
an auditor to decrypt all entries satisfyingB ∋ X. Like in
MRQED, we require that the privacy of all irrelevant entries
be preserved. We now show an interesting application of the
dual problem, and then show that MRQED implies a solution
for the dual problem.

An interesting application of the dual problem is for trad-
ing stocks and other securities. Suppose aninvestor trades
stocks through abroker. The investor specifies a price range
and a time range, such that if the stock price falls within that
range during a specific period of time, the broker can buy or
sell the stock on behalf of the investor. This is usually referred
to as astop order, limit order, orstop-limit order. Sometimes,
the investor may not fully trust the broker, and may wish to
conceal the price and time ranges from the broker before an
order is executed.

The dual problem can be applied in such scenarios to ad-
dress the privacy concerns of investors. In particular, thestock
exchange, or any third-party with knowledge of the real-time

3In reality, the average decryption time is smaller than this number, since
upon a successful decryption, theQueryDecrypt algorithm exits after
trying half of the combinations in expectation and thus performing half the
worst-case multiplications.

stock price can act as the trusted authority who owns the mas-
ter key. For convenience, in the following description, we
assume that thestock exchangeis the trusted authority. The
investor first encrypts the order along with the desired price
and time ranges, and sends the encrypted order to the broker.
Suppose that at a certain point of timet, the stock price isp.
The stock exchange constructs a decryption key for the pair
(t, p), and hands it to the broker. With this decryption key,
the broker can decrypt all orders whose price and time ranges
match the current pricep and the current timet, and execute
these orders. For orders whose price and time ranges do not
match the current price and time, the broker cannot learn any
additional information about these orders.

MRQED implies the dual problem. We use a two-
dimensional example to illustrate how MRQED implies a so-
lution for the dual problem.

• Dual.Setup (Σ, [T ]2): Call MRQED.Setup (Σ, [T ]4),
and output the public keyPK, and master keySK.

• Dual.Encrypt (PK, [x1, x2] × [y1, y2],Msg): To
encrypt a messageMsg under the range[x1, x2] ×
[y1, y2] in 2 dimensions, call MRQED.Encrypt

(PK, (x1, x2, y1, y2),Msg). Observe that here a
range[x1, x2] × [y1, y2] in [T ]2 is mapped to a point
(x1, x2, y1, y2) in [T ]4.

• Dual.DeriveKey (PK,SK, (x, y)): To generate
a decryption key for the point(x, y) ∈ [T ]2,
call MRQED.DeriveKey (PK,SK, [1, x] × [x, T ] ×
[1, y]× [y, T ]).

• Dual.QueryDecrypt (PK,DK,C): To try to de-
crypt a ciphertextC using the decryption keyDK, call
MRQED.QueryDecrypt (PK,DK,C).

In essence, the above construction maps a range[x1, x2]×
[y1, y2] ⊆ [T ]2 to a point(x1, x2, y1, y2) ∈ [T ]4, and test-
ing if a point (x, y) is within the range[x1, x2] × [y1, y2]
is equivalent to testing whether(x1, x2, y1, y2) ∈ [1, x] ×
[x, T ] × [1, y] × [y, T ]. It is easy to verify that the security
of the MRQED scheme guarantees a similar notion of secu-
rity for the dual construction, i.e., if a decryption key fails to
decrypt a certain ciphertext entry, then a probablistic polyno-
mial adversary cannot learn any additional information about
that entry.

8.2 Adaptive Security

Our scheme is provably secure in the selective-ID model.
A stronger notion of security is adaptive-ID security (also
known asfull security), i.e., the adversary does not have to
commit ahead of time which point in the lattice to attack. We
present the formal definition for MRQED adaptive-ID secu-
rity in the online technical report version [43]. Previous re-
search has shown that IBE schemes secure in the selective-ID
sense can be converted to schemes fully secure [6, 18, 46, 36]
with some loss in security. In particular, Boneh and Boyen
prove the following theorem:



Pairing Worst-case Worst-case
Example Query Nsip Ndip Nport Ntime Nprot Time Mult. Time Dec. Time

sip=207.44.178.∗,
dip=216.187.103.169, port=22,

time=∗, prot=TCP

1 1 1 1 1 65ms < 0.1ms 65ms

sip∈ [207.44.178.123, 207.44.182.247],
dip=∗, port=22,

time∈ [5pm 10/31, 9am 11/5],
prot∈{TCP, UDP, ICMP}

10 1 1 7 3 286ms 1.2ms 287ms

sip∈ [207.44.178.123, 207.60.177.15],
dip∈ [207.44.178.123, 207.60.177.15],

port∈ [3024, 35792],
time∈ [10/31/2006, 10/31/2020],

prot∈{TCP, UDP, ICMP}

20 20 15 17 3 0.98s 1.64s 2.62s

Table 4. Decryption times resulting from decryption keys of various sizes.

Theorem 8.1 ([6]). A (t, q, ǫ)-selective identity secure IBE
system (IND-sID-CPA) that admitsN distinct identities is
also a(t, q,Nǫ)-fully secure IBE (IND-ID-CPA).

This technique can be applied to our case to achieve full
confidentiality and anonymity. In our case, the scheme admits
N = TD identities and hence that would be the loss factor in
security.

9 Conclusion

We design an encryption scheme that allows us to encrypt
an arbitrary message and a set of attributes. An authority
holding a master key can issue a search capability to an autho-
rized party, allowing it to decrypt data entries whose attributes
fall within specific ranges; while the privacy of other data en-
tries is preserved. We prove the security of our scheme under
the D-BDH and the D-Linear assumptions in certain bilinear
groups. We also study the practical performance of our con-
struction in network audit log applications. Apart from net-
work audit logs, MRQED can be useful in various other ap-
plications such as financial audit logs, untrusted email servers
and medical privacy. In particular, we show that the dual
problem can be useful for investors who wish to trade stocks
through a broker in a privacy-preserving manner.
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