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Abstract

Reputation systems have become an increasingly important tool for highlighting
quality information and filtering spam within online forums. However, the depen-
dence of a user’s reputation on their history of activities seems to preclude any possi-
bility of anonymity. We show that useful reputation information can, in fact, coexist
with strong privacy guarantees. We introduce and formalize a novel cryptographic
primitive we call signatures of reputation which supports monotonic measures of
reputation in a completely anonymous setting. In our system, a user can express
trust in others by voting for them, collect votes to build up her own reputation, and
attach a proof of her reputation to any data she publishes, all while maintaining the
unlinkability of her actions.

1 Introduction

In various forms, reputation has become a ubiquitous tool for improving the quality
of online discussions. For example, a user may mark a product review on Amazon or
a business review on Yelp as “useful”, and these ratings allow others to more easily
identify the best reviews and reviewers. Most web message boards also include a means
of providing feedback to help highlight quality content, such as Slashdot’s “karma” system
and the similar systems employed in many boards running phpBB (the most common web
message board software).

Unfortunately, in all such systems, a user is linked by their pseudonym to a history
of their messages or other activities. In many online communities (e.g., a support group
for victims of abuse), users may hope that the use of a pseudonym allows them to remain
anonymous. However, recent work has shown that very little prior information about
an individual is necessary to match them to their pseudonym [NS08, BDK07, Arr06].
Building a truly private forum requires abandoning the notion of persistent identities.

We raise the question of whether it is possible to gain all the utility of existing rep-
utation systems while maintaining the unlinkability and anonymity of individual user
actions, thus avoiding the histories of activity which threaten privacy. Such a system
would enable a number of intriguing applications. For example, we might imagine an
anonymous message board in which every post stands alone – not even associated with a
pseudonym. Users would rate posts based on whether they are helpful or accurate, collect
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reputation from other users’ ratings, and annotate or sign new posts with the collected
reputation. Other users could then judge new posts based on the author’s reputation
while remaining unable to identify the earlier posts from which it was derived. Such a
forum would allow effective filtering of spam and highlighting of quality information while
providing an unprecedented level of user privacy.

Our approach. To build toward this goal, we propose signatures of reputation as a new
cryptographic framework enabling the counter-intuitive combination of reputation and
anonymity. In a conventional signature scheme, a signature is associated with a public
key and convinces the verifier that the signer knows the corresponding private key. Based
on the public key, a verifier could then retrieve the reputation of the signer. Through
signatures of reputation, we aim to eliminate the middle step of identifying the signer:
instead, verification of the signature directly reveals the signer’s reputation. With such
a tool, a user may apply their reputation to any data that they wish to publish online,
without risking their privacy. By formally defining this setting, we hope to spur further
research into techniques for its realization.

As a first step, we provide a construction for signatures of reputation that supports
monotonic aggregation of reputation. That is, we assume that additional feedback cannot
decrease a user’s reputation. While a user’s misbehavior cannot damage reputation they
have already accumulated, such a system is sufficient to prevent more casual attackers
who, for example, wish to post spam without taking the time to obtain reputation first.
Although some existing reputation systems are monotonic (e.g., Google’s PageRank al-
gorithm), one would ultimately hope to support non-monotonic reputation as well. We
leave this as a primary open problem for future work.

In our construction, the reputation feedback takes the form of cryptographic “votes”
that users construct and send to one another, and a user’s reputation is simply the number
of votes they have collected from distinct users. Each user stores the votes they have
collected, and to anonymously sign a message with their reputation, the user constructs a
non-interactive zero-knowledge (NIZK) proof of knowledge which demonstrates possession
of some number of votes. The ability of a reputation system to limit the influence of
any single user is crucial in enabling applications to control abuse. To this end, our
construction ensures that each user can cast at most one valid vote for another user (or
up to k for any fixed k ≥ 1). Enforcing this property is a major technical problem due to
the tension with the desired unlinkability properties; we solve it through a technique for
proving the distinctness of a list of values within a NIZK.

One unique (to our knowledge) feature of our constructions is the use of nested NIZKs,
that is, NIZKs which prove knowledge of other NIZKs and demonstrate that they satisfy
the verification equations. This situation arises because a vote contains a NIZK proof
that the voter has a valid credential. When a signer later uses the vote, they include
this NIZK within a further NIZK to demonstrate the validity of the votes while main-
taining their anonymity. Other interesting technical features are the use of key-private,
homomorphic encryption to allow users to receive votes while remaining anonymous and a
space-saving technique employing Merkle hash trees, which reduces the size of a signature
demonstrating reputation c from O(c) to O(log c).

Related work. While we are not aware of any work directly comparable to our proposed
signatures of reputation, others have explored the conflict between reputation and un-
linkability [Ste08, PS08, Ste06]. E-cash schemes [ASM08, CLM07, AWSM07, CHL05]
also attempt to maintain the unlinkability of individual user interactions, and in several
cases [BCE+07, CHL06, ACBM08] they have been applied for reputation or incentive
purposes. The work of Androulaki et al. [ACBM08] is particularly close to ours in its
aims. However, this and all other e-cash based approaches are incapable of supporting
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Figure 1: One-time pseudonyms, votes, and signatures of reputation.

the type of abuse resistance provided by our scheme because they allow a single user to
give multiple coins to another, inflating their reputation. In our scheme, it is possible to
prove that a collection of votes came from distinct users. This ability to prove distinct-
ness while maintaining the mutual anonymity of both voters and vote receivers is the key
technical achievement of our construction.

Schemes for anonymous credentials [CKS09, BCKL08, BCC+09, CHK+06] employ
some similar techniques to those of our constructions and may also be considered an ef-
fort toward the goal of “trust without identity”. There are two key distinctions, however.
First, anonymous credentials are concerned with the setting of access control based on
trust derived from explicit authorities, whereas this work aims to support trust derived
from a very different source: the aggregate opinions of other users. Second, like e-cash
based approaches, existing anonymous credential schemes lack a mechanism for prov-
ing that votes or credentials come from distinct users while simultaneously hiding the
identities of those users.

Finally, our setting superficially resembles that of e-voting protocols [Gro05, Gro04,
DGS03], in that it allows the casting of votes while maintaining certain privacy properties.
However, schemes for e-voting are designed for an election scenario in which the candidates
have no need to receive votes and prove possession of votes anonymously, among other
differences, and cannot be used to achieve the properties we require.

Organization. The remainder of this paper is organized as follows. In Section 2, we
elaborate on the context for the vote counting scenario and list the algorithms that would
constitute a scheme for signatures of reputation. In Section 3, we define the privacy
and security properties we desire from such a scheme. In Section 4, we discuss various
cryptographic tools and modules we will need in the full constructions, which are given
in Section 5. Finally, in Section 6, we describe modifications to the scheme to reduce the
size of the signatures before concluding with a list of open problems in Section 7.

2 Defining Signatures of Reputation

Figure 1 illustrates the flow of information in our formulation of signatures of reputation.
We refer to each user in the system as a vote receiver, voter, signer, or verifier depending
on their role in the specific algorithm being discussed. To ensure receiver anonymity, a
vote receiver invokes the GenNym algorithm to compute a “one-time pseudonym” called
a nym, which they attach to some content that they publish and wish to receive credit for.
A voter can then use the Vote algorithm on a nym to produce a vote which hides their
identity, even from the recipient (referred to as voter anonymity). The voter posts the
vote online where the recipient can later retrieve it. After collecting some votes, a signer
runs the SignRep algorithm to construct a signature of reputation on a message. The
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signature contains a proof of knowledge of distinct votes, that is, votes received by the
signer from distinct voters. The zero-knowledge nature of the proofs protects the identity
of the signer (signer anonymity). We also ensure that a malicious signer cannot inflate
its reputation (reputation soundness).

To participate in the system, each user must register with a registration authority
(RA) which generates the user’s private credentials, just as the key generating server
does within IBE schemes. Although we trust the RA for both privacy and reputation
soundness, it need only be trusted when registering users and may thereafter go offline.
As with typical IBE schemes [BF01], it is also possible to reduce the trust necessary in
the RA by distributing it amongst multiple parties [GJKR99]. Devising a scheme which
maintains privacy in the presence of a malicious RA is an interesting problem for future
work. On the other hand, relying on the honesty of the RA for reputation soundness
seems inevitable, since a malicious RA could always register additional phony users (i.e.,
Sybil identities) to arbitrarily create votes and inflate reputations.

Additional considerations. Astute readers have likely noticed that the reputation value
is itself identifying if each user has received a unique number of votes. Clearly, there is
an inherent tradeoff between the precision of a measure of reputation and the anonymity
of a user with any specific value, as pointed out by Steinbrecher [PS08]. The solution
is to use a sufficiently coarse-grained reputation; fortunately, this is easily accomplished
in the case of our construction. When producing a signature, a user may prove any
desired lower bound on their reputation instead of revealing the actual value. In this way,
our construction allow users to implement their own policies for the precision of their
reputations. For example, one policy would be to always round down to a power of two.

Another issue to consider is the connection between a piece of content a user has posted
and the attached nym. Two abuses are possible: reposting the nym of another user with
a piece of undesirable content in order to malign the user’s reputation and reposting the
desirable content of another user with one’s own nym in order to steal the credit. The
former problem can be easily prevented by including a signature within the nym linking
it to a specific message. However, this is only useful in a reputation system supporting
negative feedback. Since our constructions only support monotonic reputation, we do not
include this feature. On the other hand, there is, in general, no simple way of preventing
the latter problem. Note that the problem of assigning credit does not stem from the
anonymity that we provide; it equally affects non-privacy-preserving reputation systems.
In the case of audio or video content, one way to address this would be to use digital
watermarking techniques [CMB02] to embed the nym throughout the content.

Algorithms. We now specify the parameters to and output of each of the algorithms
in a scheme for signatures of reputation. In our notation, we use the equals sign to
denote evaluation of VerifyRep, which must be deterministic. We use arrows to denote
evaluation of each of the other algorithms to emphasize that they may be randomized.

Setup(1λ)→ (params, authkey): The Setup algorithm is run once on security parameter
1λ to establish the public parameters of the system params and a key authkey for
the registration authority.

GenCred(params, authkey) → cred: To register a user, the registration authority runs
GenCred and returns the credential cred.

GenNym(params, cred)→ nym: The GenNym algorithm produces a one-time pseudonym
nym from a user’s credential.

Vote(params, cred, nym)→ vt or ⊥: Given the credentials cred of some user and a one-
time pseudonym nym, Vote outputs a vote from that user for the owner of nym,
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or ⊥ in case of failure (e.g., if nym is invalid).

SignRep(params, cred, V,msg) → Σ or ⊥: Given the credentials cred of some user, the
SignRep algorithm constructs a signature of reputation Σ on a message msg using a
collection of c votes V = {vt1, vt2, . . . , vtc} for that user. The signature corresponds
to a reputation c′ ≤ c, where c′ is the number of distinct users who generated votes
in V . The SignRep algorithm outputs ⊥ on failure, specifically, when V contains
an invalid vote or one whose recipient is not the owner of cred.

VerifyRep(params,msg,Σ) = c or ⊥: The VerifyRep algorithm checks a purported
signature of reputation on msg and outputs the corresponding reputation c, or ⊥ if
the signature is invalid.

The most basic property required of an implementation of these algorithms is correct-
ness: they should produce the expected results when executed normally. We define this
property as follows.

Definition 1 (Correctness for signatures of reputation). Let n be a positive integer and
S ⊆ {1, . . . , n}. Set (params, authkey)← Setup(1λ) and credi ← GenCred(params, authkey),
for i ∈ {1, . . . , n}. Set nym← GenNym(params, cred1), V = { vt | vt← Vote(params, credi,
nym), i ∈ S }, and Σ ← SignRep(params, cred1, V,msg), for some message msg. If the
preceding implies, with probability one, that VerifyRep(params,msg,Σ) = |S|, then we
say that the scheme is correct.

We now go on to define the other properties we desire of a scheme for signatures of
reputation.

3 Privacy and Security Properties

In the preceding section, we gave intuitive descriptions of the four intended privacy and se-
curity properties: receiver anonymity, voter anonymity, signer anonymity, and reputation
soundness. Defining these properties rigorously requires considerably more subtlety.

In particular, to ensure our definitions are well-formed, we require the existence of
several additional algorithms. Given a special “opening key” produced by an alternate
version of Setup, the two opening algorithms (which must be deterministic) reveal the
users associated with pseudonyms and votes, thereby establishing a ground truth to which
we can refer when defining the privacy and security properties. These are directly anal-
ogous to the opening algorithm of group signature schemes. However, while opening is
considered an intended feature of group signatures, in our case the opening algorithms
exist solely for the definitions and would not be used in practice. For brevity, each of
the opening algorithms is given params and a list of user credentials cred1, . . . , credn as
implicit arguments.

Setup′(1λ) → (params, authkey, openkey): Setup′ produces values params, authkey ac-
cording to the same distribution as Setup, but also outputs an opening key openkey.

OpenNym(openkey, nym) = i: Output the index of the credential that produced nym.

OpenVote(openkey, vt) = (i, nym): Output the index of the credential and the nym
from which the vote vt was constructed.

Any scheme for signatures of reputation must provide an implementation of the above
algorithms that is correct according to the following definition.
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Definition 2 (Correctness of opening algorithms). Let n be a positive integer. Set
(params, authkey, openkey) ← Setup′(1λ) and credi = GenCred(params, authkey) for
i ∈ {1, . . . , n}. Then given any i ∈ {1, . . . , n} and nym ← GenNym(params, credi),
we require that OpenNym(openkey, nym) = i. In addition, given any i, j ∈ {1, . . . , n},
nym ← GenNym(params, credi) and vt ← Vote(params, credj , nym), we require that
OpenVote(openkey, vt) = (j, nym). If both of these properties hold, we say that the
scheme has correct opening algorithms.

For later notational convenience, given a set of votes V , we also define the functions
OpenVoters(openkey, V ) = { i | (i, nym) = OpenVote(openkey, vt), vt ∈ V } and
OpenReceivers(openkey, V ) = { nym | (i, nym) = OpenVote(openkey, vt), vt ∈ V }.

Before describing the games defining each of the privacy and security properties,
one more preliminary matter must be discussed. In the games we define, the adver-
sary may make queries to an oracle O. The oracle is given access to a list of user
credentials cred1, . . . , credn and responds to the following four types of queries. On input
(“corrupt”, i), O returns credi. On input (“nym”, i), O returns nym← GenNym(params,
credi). On input (“vote”, i, nym), O returns vt ← Vote(params, credi, nym). On input
(“signrep”, i, V,msg), O returns Σ ← SignRep(params, credi, V,msg). In each case, O
also logs the tuple on which it was queried and its response by adding them to a set L.
We will refer to the logged queries and responses in order to state the winning conditions
for each game.

Receiver anonymity. The receiver anonymity property captures the notion that a one-
time pseudonym generated by the GenNym algorithm should reveal nothing about its
owner, unless the adversary has seen that user’s credential or made a SignRep query
which trivially reveals the owner. This property may be defined by the following game,
where st denotes the internal state of the adversary.

PrRANON
A (λ) = Pr

 b = b′ ∧
Legal(i∗0, i

∗
1, openkey, L)

∣∣∣∣∣∣∣∣
(params, authkey, openkey)← Setup′(1λ);

[credi ← GenCred(params, authkey)]1≤i≤n ;

(i∗0, i
∗
1, st)← AOL(params); b

R←− {0, 1};
nym∗ ← GenNym(params, credi∗b ); b′ ← AOL(st, nym∗)

∣∣∣∣∣∣∣∣


To prevent A from winning this game through normal usage of the scheme, we make
the following requirements on its queries and challenge (i∗0, i

∗
1), which we abbreviate as

“Legal”. First, (“corrupt”, i∗0) /∈ L and (“corrupt”, i∗1) /∈ L. In other words, if an adver-
sary must compromise a user’s private credentials to detect their pseudonyms, we will not
consider that a failure of receiver anonymity.1 Second, for all (“signrep”, i, V,msg) ∈ L,
if i ∈ {i∗0, i∗1}, we require that nym∗ /∈ OpenReceivers(openkey, V ). An adversary that
violates this property is one that simply returns the challenge nym∗ (after voting for it)
in a SignRep query. The reply to such a query immediately reveals b, as expected by
the semantics of the scheme (i = i∗b iff the reply is not ⊥). Given these rules, we define
receiver anonymity as follows.

Definition 3. A scheme for signatures of reputation is receiver anonymous if, for all
PPT adversaries A, |PrRANON

A (λ)− 1
2 | is a negligible function of λ.

1One might try to extend this definition to incorporate a forward security property ensuring
pseudonyms generated before a user’s credentials are compromised remain unlinkable (that is, by up-
dating the credentials after generating each pseudonym). However, this is futile: if the updated creden-
tial can still use votes cast for old pseudonyms, then Vote and SignRep can be used to detect the old
pseudonyms.
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Voter anonymity. We wish to define the voter anonymity property to encompass the
strongest form of unlinkability compatible with the general semantics of the scheme, as
we did in the case of receiver anonymity. Doing so is more subtle in this case, however, due
to the necessity of detecting duplicate votes. Because we require a SignRep algorithm
to demonstrate the number of votes from distinct users, such an algorithm can be used
by a vote receiver to determine whether two votes cast for any of their pseudonyms were
produced by the same voter (duplicates). That is, the receiver can try to use the two votes
to produce a signature and then check the reputation of the result with VerifyRep.

In defining voter anonymity, we allow precisely this type of duplicate detection, but
nothing more. While initially this may seem like an “exception” to the unlinkability of
votes, in actuality, it is not only inevitable,2 but also unlikely to be a practical concern.
Although a vote receiver must be able to detect duplicate votes, we can still avoid the
voting histories we originally set out to eliminate. In particular, our definition ensures
that in the following cases it is not possible to determine whether two votes were cast by
the same user (i.e., to link the votes):

1. A user cannot link a vote for one of their pseudonyms with a vote for a pseudonym
of another user, nor can they link two votes for distinct pseudonyms of another user
(or two different users).

2. A colluding group of users cannot link votes between their pseudonyms, provided the
pseudonyms correspond to different credentials. Furthermore, they are not able to
link the numbers of duplicates they have observed. For example, if a user determines
that they have received two votes from one user and three votes from another, they
will have no way of matching these totals up with those of another colluding user.

The game below captures these properties.

PrVANON
A (λ) = Pr

 b = b′ ∧
Legal(j∗0 , j

∗
1 , nym

∗,
openkey, L)

∣∣∣∣∣∣∣∣
(params, authkey, openkey)← Setup′(1λ);

[credi ← GenCred(params, authkey)]1≤i≤n ;

(j∗0 , j
∗
1 , nym

∗, st)← AOL(params); b
R←− {0, 1};

vt∗ ← Vote(params, credj∗b , nym
∗); b′ ← AOL(st, vt∗)

∣∣∣∣∣∣∣∣


In this case, we define Legal to check the following. Let i∗ = OpenNym(openkey, nym∗).
First, if the adversary has made a query (“signrep”, i∗, V,msg) ∈ L where vt∗ ∈ V , we
require that {j∗0 , j∗1} ⊆ OpenVoters(openkey, V ). In other words, the coin b should
not determine the number of distinct voters in a “signrep” query involving vt∗. Second,
if (“corrupt”, i∗) ∈ L, we require that there not exist a (“vote”, j, nym) ∈ L such that
j ∈ {j∗0 , j∗1} and i∗ = OpenNym(openkey, nym). That is, if the adversary controls the
receiver i∗ of the challenge vote, then they may not request another vote from j∗0 or j∗1 ,
since its status as a duplicate or lack thereof would reveal b.

Definition 4. A scheme for signatures of reputation is voter anonymous if, for all PPT
adversaries A, |PrVANON

A (λ)− 1
2 | is a negligible function of λ.

Signer anonymity. The signer anonymity property requires that a signature of reputation
reveal nothing about the signer beyond their reputation. In this case, we allow the

2Allowing proofs of vote distinctness while eliminating the ability to identify duplicates could only
be possible if the notion of discrete votes is abandoned. This approach would require all votes in the
system to be aggregated into a indivisible block before they can be used to produce signatures, a vastly
impractical solution.
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adversary access to all user’s credentials. As a result, they have no need for the oracle O,
as the adversary could answer the queries itself.

PrSANON
A (λ) = Pr

 b = b′ ∧
Legal(msg,Σ∗0,Σ

∗
1)

∣∣∣∣∣∣∣∣
(params, authkey, openkey)← Setup′(1λ);

[credi ← GenCred(params, authkey)]1≤i≤n ;

(i∗0, i
∗
1, V

∗
0 , V

∗
1 ,msg, st)← A(params, [credi]); b

R←− {0, 1};
Σ∗b ← SignRep(params, credi∗b , V

∗
b ,msg); b′ ← A(st,Σ∗b)

∣∣∣∣∣∣∣∣


Here, Legal requires only that VerifyRep(params,msg,Σ∗0) = VerifyRep( params,msg,Σ∗1).
That is, the value of b should affect neither the reputation values of the resulting signa-
tures nor their validity.

Definition 5. A scheme for signatures of reputation is signer anonymous if, for all PPT
adversaries A, |PrSANON

A (λ)− 1
2 | is a negligible function of λ.

Reputation soundness. To define the soundness of a scheme for signatures of reputation,
we use a computational game in which the adversary must forge a valid signature of some
reputation strictly greater than that of any signature they could have produced through
legitimate use of the scheme.

PrSOUND
A (λ) = Pr

 VerifyRep(params,msg,Σ) 6= ⊥
∧ Legal(openkey, L,msg,Σ)

∣∣∣∣∣∣
(params, authkey, openkey)← Setup′(1λ);

[credi ← GenCred(params, authkey)]1≤i≤n ;

(msg,Σ)← AOL(params)

∣∣∣∣∣∣


In this case, Legal makes the requirement that Σ /∈ L. More subtly, it must also ensure
that the forged signature has reputation greater than what it could be if the adversary had
used the scheme normally. The value of the best such legitimately obtainable reputation
will depend on several things: the number of users the adversary has corrupted (since
the adversary may use their credentials to produce votes), the number of votes received
from honest users via oracle queries, and how those votes were distributed amongst the
corrupted users. More precisely, the adversary may legitimately construct a signature of
reputation equal to, at most, the sum of the number of corrupted users and the greatest
number of distinct honest users that voted for a single corrupt user.

The corresponding requirement checked by Legal may be formalized as follows. Let
C = { i | (“corrupt”, i) ∈ L } be the set of corrupted users. For each i ∈ C, define
Si = { j | (“vote”, j, nym) ∈ L∧j /∈ C∧i = OpenNym(openkey, nym) }. Let `1 = |C|, and
let `2 = maxi∈C |Si|. That is, `2 is the greatest number of distinct honest users that voted
for a single corrupt user. Then we require that VerifyRep(params,msg,Σ) > `1 + `2 for
the adversary to succeed.

Definition 6. A scheme for signatures of reputation is sound if, for all PPT adversaries
A, PrSOUND

A (λ) is a negligible function of λ.

In some applications, a weaker version of soundness may suffice and may be desirable
for greater efficiency. One natural way to relax the definition is to specify an additional
security parameter ε ∈ [0, 1) as a multiplicative bound on the severity of cheating we wish
to prevent. That is, we require a signature of reputation c to ensure that at least (1−ε) ·c
distinct votes for the signer exist. To this end, we define Prε−SOUND

A (λ) the same way as

PrSOUND
A (λ), but using the requirement that (1−ε)·VerifyRep(params,msg,Σ) > `1+`2.

This yields the following definition of ε-soundness.

Definition 7. A scheme for signatures of reputation is ε-sound if, for all PPT adver-
saries A, Prε−SOUND

A (λ) is a negligible function of λ.

Note that Definition 6 is the special case of the above where ε = 0.
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4 Building Blocks

We now describe the technical tools from which our scheme is constructed, including
several standard cryptographic primitives, two specialized modules, and our complexity
assumptions. First of all, our constructions rely on a bilinear map between groups of
prime order p, which we denote e : G × Ĝ → GT . We also assume the availability of a
collision-resistant hash function H : {0, 1}∗ → Zp.
Non-interactive proof systems for bilinear groups. Our scheme will also make exten-
sive use of the recent Groth-Sahai non-interactive proof system [GS08]. Their tech-
niques allow the construction of non-interactive witness-indistinguishable (NIWI) and
non-interactive zero-knowledge (NIZK) proofs for pairing product equations, multi-scalar

equations in G or Ĝ, and quadratic equations in Zp. We now define the notation we
will use to refer to this scheme. We write GS.Setup(1λ) → (crs, xk) to denote the
setup algorithm, which outputs a common reference string crs and an extractor key
xk. We use the notation introduced by Camenisch and Stadler [CS97] of the form
Π = NIZK{ x1, . . . , xk : E1 ∧ . . . ∧ E` } to denote the construction of a zero-knowledge
proof that a set of equations E1, . . . , E` is satisfiable. Here, x1, . . . , xk denote the secret
witness variables. The NIZK consists of a commitment to each of the k witness variables,
along with a constant size value for each of the ` equations. When variables other than
the witnesses appear in the listed equations, those are public values which are not in-
cluded in the proof. These values must be available for verification of the resulting proof,
which we denote by GS.Verify(crs,Π, 〈a1, . . . , am〉). The arguments a1, . . . , am are the
public values; the relevant equations will be clear from context. Note that in the GS
proof system, it is possible to produce a NIZK only when the equations being proved are
“tractable” [Gro07]. This condition holds for all the equations throughout this paper,
since none involve any elements of GT except the identity.

Selective-tag weakly CCA-secure encryption. Next, we use a tag based encryption scheme
[MRY04], which we require to be selective-tag, weakly CCA-secure. For this we may
employ the scheme due to Kiltz [Kil06] based on the DLinear assumption. We denote its
algorithms as follows.

CCAEnc.Setup(1λ)→ (pkcca, skcca): Generate a public, private key pair.

CCAEnc.Enc(pkcca, tag,msg, (r, s)) → C: Encrypt a message under the given public
key and tag using randomness (r, s) ∈ Z2

p.

CCAEnc.Dec(skcca, tag, C) → msg: Use the private key to decrypt a ciphertext en-
crypted under tag.

When we need to encrypt multiple elements ~x = (x1, . . . , xk) ∈ Gk, we use the following
shorthand: CCAEnc.Enc(pkcca, tag, ~x, ~r), where ~r ∈ Z2k

p .

Weakly EF-CMA secure signatures and strong one-time signatures. We will also use the
SDH-based signature scheme due to Boneh and Boyen [BB08], which we denote BBSig.

Let g
R←− G, s R←− Zp. In BBSig, the signing key is skbb = (g, s), the verification key is

vkbb = (g, gs), and a message msg ∈ Zp is signed by computing BBSig.Sign(skbb,msg) =

g
1

s+msg . This scheme is existentially unforgeable under weak chosen-message attack (weak
EF-CMA security). In a weak chosen message attack, the adversary commits to the
query messages at the beginning of the security game. The scheme is also a strong one-
time signature scheme; in our construction, we use subscripts such as σbb and σots to
distinguish the cases where we use the scheme for its weak EF-CMA security from the
cases where we use it to produce a strong one-time signature.
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Signature scheme for certificates. To produce users’ secret credentials in our construction,
the registration authority will need to sign tuples of ` elements from G. For this purpose
we define the following signature scheme, denoted Cert.

Cert.Setup(1λ)→ (vkcert, skcert): Randomly select γ
R←− Zp, ĝ, ĝ0

R←− Ĝ, g, h, f1, f2
R←−

G, and, for 1 ≤ i ≤ `, ûi, v̂i
R←− Ĝ. Output skcert = γ and vkcert = (g, h, f1, f2, ĝ, ĝ0, g

γ ,
û1, . . . , û`, v̂1, . . . , v̂`).

Cert.Sign(vkcert, skcert,msg) → σ: Given an ` element message msg = (x1, . . . , x`)

in G`, select ρ, r1, . . . , r`, s1, . . . , s`
R←− Zp and compute the signature as σ =(

σρ, g
ρ, hρ, ĝρ0 , {σri , σsi , gri , hsi , û

ri
i , v̂

si
i , (xif1)ri , (xif2)si}1≤i≤`

)
, where σρ = ĝ

1
γ+ρ ,

σri = ĝ
1

ρ+ri , and σsi = ĝ
1

ρ+si .

Cert.Verify(vkcert,msg, σ)→ 1 or 0: To check a signature σ, we verify that
e(gγgρ, σρ) = e(g, ĝ), e(gρ, ĝ0) = e(g, ĝρ0), e(hρ, ĝ0) = e(h, ĝρ0) and that, for 1 ≤ i ≤ `,
e(gρgri , σri) = e(g, ĝ), e(hρhri , σsi) = e(h, ĝ), e(gri , ûi) = e(g, ûrii ), e(hsi , v̂i) =
e(h, v̂sii ), e(xif1, û

ri
i ) = e((xif1)ri , ûi), e(xif2, v̂

si
i ) = e((xif2)si , v̂i).

The basic idea of Cert.Sign is to first use the long-term signing key γ to sign a
one-time signing key ρ, then use ρ to sign random numbers ri and si, which are in turn
used to sign the components of the message. In Appendix B, we prove that this scheme
(like BBSig) satisfies weak EF-CMA security.

Key-private encryption. Our construction also makes use of an IK-CPA secure (a.k.a.
key-private) encryption scheme which offers a multiplicative homomorphism. Informally,
the key privacy property ensures it is infeasible to match a ciphertext with the public key
used to produce it; this property is used to achieve receiver anonymity. Below, we give an
IK-CPA secure scheme which may be regarded as a variant of linear encryption [BBS04].

IKEnc.Setup(1λ)→ paramsike: Select paramsike = (f, h)
R←− G2.

IKEnc.GenKey(paramsike)→ (upkike, uskike): To generate a key pair, select

uskike = (a, b)
R←− Z2

p and compute upkike = (fa, hb) ∈ G2.

IKEnc.Enc(paramsike, upkike,msg, (r, s))→ C: To encrypt a msg ∈ G under public key
upkike = (A,B) using random exponents r, s ∈ Zp, compute C = (msg·ArBs, fr, hs).

IKEnc.Dec(paramsike, uskike, C)→ msg: To decrypt a ciphertext C = (C1, C2, C3) with
private key uskike = (a, b), compute msg = C1 · C−a2 · C−b3 .

To denote encryption of a k-block message ~x ∈ Gk, we will use the shorthand
IKEnc.Enc(paramsike, upkike, ~x, ~r), where ~r ∈ Z2k

p . In Appendix C, we provide a formal
definition of IK-CPA security and a proof the above scheme meets it.

The multiplicative homomorphism of this encryption scheme may be evaluated through
component-wise multiplication, denoted ⊗. Specifically, if (C1, C2, C3) and (C ′1, C

′
2, C

′
3)

are encryptions of x and x′ using the same upkike and exponents r, s and r′, s′ respectively,
then (C1, C2, C3)⊗ (C ′1, C

′
2, C

′
3) is the encryption of x · x′ under r + r′ and s+ s′. Also,

we will write (C1, C2, C3)� x′ to denote (C1 · x′, C2, C3), which is an encryption of x · x′
under the original randomness r, s.

When using the above homomorphism to compute an encryption of x · x′, the distri-
bution of the resulting ciphertext is dependent on that of the input ciphertexts. In our
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scheme, we will need to rerandomize the ciphertexts to remove this dependency. Further-
more, we will need to do so without knowledge of the upkike used for encryption. Observe
that this is possible if we have available two encryptions of 1 ∈ G under independent
random exponents. Specifically, suppose Cx is an encryption of x using rx, sx and C1, C2

are encryptions of 1 using r1, s1 and r2, s2, respectively. Select t1, t2
R←− Zp and compute

C ′x = Cx ⊗ Ct11 ⊗ C
t2
2 , where Ct11 and Ct22 denote componentwise exponentiation. Then

C ′x is an encryption of x using exponents rx + r1t1 + r2t2 and sx + s1t1 + s2t2, and the
distribution of C ′x is independent of the distribution of Cx.

Assumptions. Here we detail the complexity assumptions necessary to prove the privacy
and security properties of our constructions. In addition to the well-known decisional
linear (DLinear) and strong Diffie-Hellman (SDH) assumptions, we employ the following
three assumptions, the first two of which are parameterized by a positive integer q.

BB-HSDH Select γ
R←− Z∗p, g

R←− G, ĝ, ĝ0
R←− Ĝ, and ρi

R←− Zp for i ∈ {1, . . . , q}. Then

given (g, gγ , ĝ, ĝγ , ĝ0, (ρi, ĝ
1

γ+ρi )1≤i≤q), it is computationally infeasible to output a

tuple (gρ, ĝρ0 , ĝ
1

γ+ρ ) where ρ /∈ {ρ1, . . . , ρq}.

BB-CDH Select γ
R←− Z∗p, g

R←− G, ĝ, û
R←− Ĝ, and ρi

R←− Zp for i ∈ {1, . . . , q}. Then

given (g, gγ , ĝ, ĝγ , û, (ρi, ĝ
1

γ+ρi )1≤i≤q), it is infeasible to output ûγ .

SCDH Select ρ, r, s
R←− Zp, g, h

R←− G, and ĝ, û, v̂
R←− Ĝ. Then given (ρ, g, h, ĝ, û, v̂, ûr, v̂s,

gr, hs, ĝ
1
r+ρ , ĝ

1
s+ρ ) it is infeasible to output a tuple (z, zr, zs) where z ∈ G and z 6= 1.

The first two assumptions above were introduced in the delegatable anonymous cre-
dential work of Belenkiy et. al. [BCC+09]. The SCDH (“stronger than CDH”) assumption
is new; we provide a proof of its hardness in generic groups in Appendix A. Note that

if we remove the terms ĝ
1
r+ρ , ĝ

1
s+ρ from the SCDH assumption, the resulting assumption

would be implied by DLinear. Therefore, we are assuming that these two terms “will not
help” the adversary in outputting (z, zr, zs).

5 Main Constructions

To better motivate our full construction, we first present a simpler, “unblinded” version
which neglects the receiver anonymity property and assumes users correctly follow the
protocol. These algorithms will form part of the full version.

Unblinded scheme. In unblinded scheme, each user i generates a voting key votekeyi and a
receiver key rcvkeyi. Given rcvkeyi, a user j can use its votekeyj to compute an unblinded
vote Uj,i for user i. User i can then demonstrate its reputation by showing a “weak
encryption” of the unblinded votes it has received.

SetupUnblinded(1λ)→ paramsub: Select paramsub = (g, h)
R←− G2.

GenKey(paramsub)→ rcvkeyi, votekeyi: To make a key pair for user i, select αi, βi
R←− Zp

and xi,k, yi,k, zi,k
R←− G for k ∈ {1, 2}. Define vski = (αi, βi) and vpki = (gαi , hβi ,

zi,1, zi,2) and output rcvkeyi = (xi,1, yi,1, xi,2, yi,2) and votekeyi = (vski, vpki).

VoteUnblinded(rcvkeyi, votekeyj) → Uj,i: To compute a vote from j to i, we parse
the keys as above, using subscripts i, j to distinguish the components of user i’s key

and user j’s key, then output Uj,i = (x
αj
i,1 · y

βj
i,1 · zj,1, x

αj
i,2 · y

βj
i,2 · zj,2).
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ShowRep(U1, . . . , Uc, (r, s)) → rep: To compute the weakly encrypted version of c
unblinded votes using random exponents r, s ∈ Zp, we output rep = [ uri,1·usi,2 ]1≤i≤c,
where ui,1, ui,2 denote the two components of Ui.

These algorithms are designed to ensure several properties we will need when they
are used within the full construction. First, an unblinded vote Uj,i is a deterministic
function of votekeyj and rcvkeyi, so votes Uj1,i, Uj2,i from distinct voters j1 6= j2 will have
distinct values. Furthermore, ShowRep preserves this distinctness, so if Uj1,i 6= Uj2,i
and (Vj1,i, Vj2,i) = ShowRep(Uj1,i, Uj2,i, (r, s)), then Vj1,i 6= Vj2,i. Second, without
votekeyj , an adversary cannot forge a vote from user j (based on the CDH assumption).
These two properties will be needed for the soundness of the full construction. Third,
given Uj1,i1 , Uj2,i2 , two colluding receivers i1 and i2 cannot determine whether j1 = j2.3

This relies on the DLinear assumption and will help ensure voter anonymity. Finally, if
ShowRep is invoked twice on the same unblinded votes but with independent random-
ness, the resulting values rep1, rep2 cannot be linked to one another. This also relies on
the DLinear assumption and will be used to help ensure signer anonymity.

Full construction. The full construction is given in Figures 2 and 3. As for the opening
algorithms, Setup′ is obtained from Setup by simply returning the extractor key xk of
the Groth-Sahai proof system as openkey = xk rather than discarding it. The OpenNym
algorithm then uses the extractor key on the NIZK in a nym to obtain the committed
rcvkey, which may then be matched against a list of credentials cred1, . . . , credn to deter-
mine the owner of nym. Similarly, OpenVote works by using the extractor key to obtain
the rcvkey of the voter from the commitment in the vote’s NIZK.

The algorithms of Figures 2 and 3 (along with opening algorithms described above)
satisfy Definitions 1–6. The correctness properties may be verified by inspection; for each
of the other properties, we provide detailed proofs in Appendices B–E. Intuitively, the full
scheme is obtained through three modifications to the unblinded scheme. First, to limit
voting to valid members of the system, a user’s rcvkey and votekey are signed and issued
by the registration authority. Second, we use a “blinded” voting protocol based on key-
private, homomorphic encryption to achieve receiver anonymity. Third, users construct
NIZKs to prove they have correctly followed the protocol. We now elaborate on the later
two ideas and the operation of the SignRep algorithm.

Blinded voting. From a high level, a user computes a one-time pseudonym nym by en-
crypting their rcvkey under their upkike. Instead of voting on the rcvkey, a voter then votes
on the encrypted version in the nym. This is made possible by the homomorphism of the
encryption scheme: the voter homomorphically computes an encryption of the unblinded
vote, which the recipient can later decrypt. Only the recipient has the secret key uskike
necessary to do so.

More precisely, if (Cx,k, Cy,k)k∈{1,2} is the encryption of rcvkey = (x1, y1, x2, y2), the

voter computes the encrypted vote as (Cαx,k ⊗ C
β
y,k � zk), where α, β, zk come from the

voter’s key. To allow the voter to rerandomize the resulting ciphertext using the tech-
nique described in Section 4, the recipient also includes two independent encryptions of
1 ∈ G in the nym, which we denote C1,1 and C1,2. To understand the requirement that
IKEnc be selective-tag weakly CCA-secure, recall that in the security definition, when
an adversary makes a “signrep” oracle query, it can indirectly learn whether one or more
votes correspond to the user i. This allows the oracle to be used as something similar to

3Note that, if the term zj,k is omitted, an attack is possible. Two colluding users vote for a recipient
i, resulting in two votes U1, U2. Later, when i constructs rep = ShowRep(U1, U2, (r, s)), the adversary
would be able to detect the correlation in rep and confirm that it came from i. The term zj,k prevents
this because the adversary does not know its exponent.
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Setup(1λ).
(crs, xk)← GS.Setup(1λ)
paramsub ← SetupUnblinded(1λ)
paramsike ← IKEnc.Setup(1λ)
(pkcca, skcca)← CCAEnc.Setup(1λ)
(vkcert, skcert)← Cert.Setup(1λ) ,
Return
params = (crs, paramsub, paramsike, pkcca, vkcert),
authkey = skcert.

GenCred(params, authkey).
(rcvkey, vsk, vpk)← GenKey(paramsub)
(vkbb, skbb)← BBSig.Setup(1λ)
(upkike, uskike)← IKEnc.GenKey(paramsike)
Denote pub cred := (rcvkey, vpk, vkbb, upkike)
cert← Cert.Sign(vkcert, skcert, pub cred)
Return cred = (pub cred, cert, skbb, vsk, uskike)

GenNym(params, cred).
Parse cred = (pub cred, cert, skbb, . . .)
Parse pub cred = (rcvkey, vpk, vkbb, upkike)
Denote msg := (rcvkey, 1, 1) ∈ G6

(vkots, skots)← BBSig.Setup(1λ), ~r
R←− Z12

p

C ← IKEnc.Enc(paramsike, upkike,msg, ~r)
σbb ← BBSig.Sign(skbb, H(vkots))
Π = NIZK{ pub cred, cert, σbb, ~r :

Cert.Verify(vkcert, pub cred, cert)
∧ BBSig.Verify(vkbb, H(vkots), σbb)
∧ C = IKEnc.Enc(paramsike, upkike,msg, ~r)}

σots ← BBSig.Sign(skots, H(C‖Π‖vkots))
Return nym = (C,Π, vkots, σots)

Subroutine: VerifyNym(params, nym).
Parse nym = (C,Π, vkots, σots)
Denote pub vals := 〈params, C, vkots〉
If BBSig.Verify(vkots, H(C‖Π‖vkots), σots)
∧ GS.Verify(crs,Π, pub vals)

Return 1; Else return 0

Vote(params, cred, nym).
Parse cred = (pub cred, cert, skbb, vsk, uskike)
Parse pub cred = (rcvkey, vpk, vkbb, upkike)
Parse nym = (C, . . .)

where C = ({Cx,k, Cy,k}k∈{1,2}, C1,1, C1,2)
Parse vsk = (α, β), vpk = (A,B, z1, z2)
Parse rcvkey = (x1, . . .)
If ¬VerifyNym(params, nym) Return ⊥
(vkots, skots)← BBSig.Setup(1λ),
tag = H(vkots), σbb ← BBSig.Sign(skbb, tag)

~r = (r1,1, r1,2, r2,1, r2,2)
R←− Z4

p, ~s
R←− Z2

p

C1 =
[
(Cαx,k ⊗ C

β
y,k � zk)⊗ Crk,11,1 ⊗ C

rk,2
1,2

]
k∈{1,2}

C2 ← CCAEnc.Enc(pkcca, tag, x1, ~s)
Π = NIZK{ pub cred, cert, vsk, σbb, ~r, ~s :

Cert.Verify(vkcert, pub cred, cert)
∧ BBSig.Verify(vkbb, tag, σbb)
∧ A = gα ∧ B = hβ

∧ C1 =
[
(Cαx,k ⊗ C

β
y,k � zk)⊗ Crk,11,1 ⊗ C

rk,2
1,2

]
k∈{1,2}

∧ C2 = CCAEnc.Enc(pkcca, tag, x1, ~s) }
σots ← BBSig.Sign(skots, H(nym‖C1‖C2‖Π‖vkots))
Return vt = (nym, C1, C2,Π, vkots, σots)

VerifyRep(params,msg,Σ).
Parse Σ = (c,msg, C, rep,Π, vkots, σots)
If |rep| = c and

There are no duplicate values in rep and
GS.Verify(crs,Π, 〈params, C, rep, vkots〉) and
BBSig.Verify(vkots, H(c‖msg‖C‖rep‖Π‖vkots), σots)

Return c; Else return ⊥

Subroutine: VerifyVote(params, vt).
Parse vt = (nym, C1, C2,Π, vkots, σots)
Denote pub vals := 〈params, C1, C2, vkots〉
If BBSig.Verify(vkots, H(nym‖C1‖C2‖Π‖vkots), σots)
∧ GS.Verify(crs,Π, pub vals)
∧ VerifyNym(params, nym)

Return 1; Else return 0

Figure 2: The Setup, GenCred, GenNym, Vote, and VerifyRep algorithms.

a decryption oracle, ultimately requiring a CCA security property. To ensure an adver-
sary cannot frame a honest user i by forging a nym that opens to user i, the GenNym
algorithm also picks a one-time signature key pair (skots, vkots) and proves knowledge of
a signature σbb ← BBSig.Sign(skbb, H(vkots)), then uses skots to sign the entire nym.
One-time signatures are similarly employed in Groth’s group signature scheme [Gro07];
we also use this technique in the votes and signatures of reputation.
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SignRep(params, cred, V,msg)
Parse cred = (pub cred, cert, skbb, vsk, uskike) where pub cred = (rcvkey, vpk, vkbb, upkike)
Parse paramsike = (f, h), upkike = (A,B), uskike = (a, b)
Parse V = {vt1, vt2, . . . , vtc} where vti = (nymi, C1,i, C2,i,Πi, vkots,i, σots,i)
Denote tagi = H(vkots,i)
∀1 ≤ i ≤ c′ : Parse nymi = (C ′i,Π

′
i, vkots

′
,i, σots

′
,i)

If ∃1 ≤ i ≤ c′ : 1 6= VerifyVote(params, vti), return ⊥
If ∃1 ≤ i ≤ c′ : rcvkey 6= IKEnc.Dec(paramsike, uskike, C

′
i), return ⊥

(vkots, skots)← BBSig.Setup(1λ), tag = H(vkots), σbb ← BBSig.Sign(skbb, H(vkots))
∀1 ≤ i ≤ c′ : U ′i ← IKEnc.Dec(paramsike, uskike, C1,i)
Remove duplicates: {U1, U2, . . . , Uc} := {U ′1, . . . , U ′c′}, where U1, . . . , Uc are all distinct

~r
R←− Z2

p, rep← ShowRep((U1, . . . , Uc), ~r)

~s
R←− Z2c

p , C ← CCAEnc.Enc(pkcca, tag, (U1, . . . , Uc), ~s)
Π = NIZK{ pub cred, cert, uskike, σbb, (vti, tagi, Ui)1≤i≤c, ~r, ~s :

∧ Cert.Verify(vkcert, pub cred, cert)
∧ BBSig.Verify(vkbb, tag, σbb) ∧ A = fa ∧B = hb

∧ ∀1 ≤ i ≤ c : GS.Verify(crs,Πi, 〈params, C1,i, C2,i, tagi〉)
∧ ∀1 ≤ i ≤ c : GS.Verify(crs,Π′i, 〈params, C ′i〉) (∗)
∧ ∀1 ≤ i ≤ c : rcvkey = IKEnc.Dec(paramsike, uskike, C

′
i)

∧ ∀1 ≤ i ≤ c : Ui = IKEnc.Dec(paramsike, uskike, C1,i)
∧ rep = ShowRep((U1, . . . , Uc), ~r) ∧ C = CCAEnc.Enc(pkcca, tag, (U1, . . . , Uc), ~s) }

σots ← BBSig.Sign(skots, H(c‖msg‖C‖rep‖Π‖vkots))
Return Σ = (c,msg, C, rep,Π, vkots, σots)
(*): For this line, verify all equations in the NIZK Π′i, except the BBSig.Verify equation.

Figure 3: The SignRep algorithm.

Nested NIZKs. Users must prove through a series of NIZKs that they have correctly
followed the algorithms using credentials certified by the registration authority. It is
worth mentioning that we use “nested” NIZKs. Specifically, a signature of reputation
includes a commitment to the votes and a NIZK proving they are valid. Because the
votes themselves contain NIZKs, proving that the votes are valid involves proving that
the NIZKs they contain satisfy the Groth-Sahai NIZK verification equations, all within
the NIZK for the resulting signature.

Signatures of reputation. To construct a signature of reputation, the signer uses uskike
to decrypt the ciphertexts in the votes they have received, obtaining unblinded votes
U1, . . . , Uc. It calls ShowRep(U1, . . . , Uc) to compute a weak encryption of these un-
blinded votes. Recall that this encryption preserves “distinctness”. It also encrypts these
unblinded votes using CCAEnc; this allows a simulator to open the signature of reputa-
tion under a simulated crs without xk.

6 Short Signatures of Reputation

What we have described thus far produces signatures of reputation c that are of size Θ(c).
If perfect soundness is not necessary, this cost can be dramatically reduced. Specifically,
in this section we describe a way to obtain signatures of size O( 1

ε log c) while maintaining
ε-soundness (Definition 7) in the random oracle model.

From a high level, we take the following approach in improving space efficiency. Rather
than including all votes in the signature, we only include a randomly selected, constant
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size subset. Specifically, we require that the signer first commit to a list of all the votes
with a hash function H and then interpret the output of H as a challenge specifying the
indices of the votes to include. The signer must also demonstrate that the votes included
were in fact the votes at the indices in the challenge set when the commitment was formed.
To do so efficiently, we compute the commitment using a Merkle hash tree [Mer89]. We
implement this technique with the following changes to the SignRep algorithm.

After determining the number of distinct unblinded votes c, set ` = dλε e; this will
be the size of our challenge set. Recall that λ is the security parameter. Now if ` ≥ c,
we include all votes, computing Σ normally. Otherwise, we proceed as follows. Let
rep = (R1, . . . Rc). Sort these values to obtain a list Rρ1 , Rρ2 , . . . , Rρc , where Rρi < Rρi+1

for 1 ≤ i ≤ c − 1. The NIZK Π computed by SignRep will include the following values
for the ρith vote: a tuple θi of commitments to vti, tagi, Ui and a tuple of values ζi used
to verify the GS.Verify and IKEnc.Dec equations. We collect these together to form
ωi = (Rρi , Rρi+1

, θi, ζi), with Rρc+1
defined as a special symbol ∞ for consistency.

Now we can compute the set of challenge indices. Let m = dlog2 ce be the height of
the smallest binary tree with at least c leaf nodes. We construct a complete binary tree of
heightm, associating the first c leaf nodes with the values ω1, ω2, . . . , ωc and any remaining
leaf nodes with dummy values ωc+1, . . . , ω2m = 0. Next, we compute a hash value hn
for each node n in the tree as follows. If n is a leaf with index i, we set hn = H(ωi);
otherwise, n has a left child nl and a right child nr and we set hn = H(hnl‖hnr ). We
thus obtain a hash value hroot for the root of the tree to be used to construct a set of `
distinct challenge indices I ⊂ {1, 2, . . . , c}. This is done by starting with an empty set I,
and adding the indices 1 + (H(0‖hroot) mod c), 1 + (H(1‖hroot) mod c), etc., one by one,
skipping duplicates and stopping when |I| = `.

Now that we have specified the challenge set I, we may list the values included in the
final signature of reputation. We start with the proof Π computed as before and remove
all per-vote values θρi , ζρi for i /∈ I. Note that the result is a valid Groth-Sahai NIZK
that only verifies the votes at indices in I; furthermore, it is distributed identically to a
proof computed directly using only those votes. In addition to the reduced proof Π, we
include in the final signature of reputation the pairs (Rρi , Rρi+1

) for each i ∈ I and the
off-path hashes needed to verify that the challenge set was constructed correctly. There
are precisely dlog2 ce off-path hash values for each vote (although some will be shared by
multiple votes), so we obtain an overall signature size of O(` log c) = O( 1

ε log c).
The necessary modifications to the VerifyRep algorithm are straightforward. We

verify the proof Π normally, then collect each of the per-vote terms present and hash
them with H to obtain the values of the corresponding leaves in the hash tree. Using
the provided off-path hash values, we recompute the root value hroot. From hroot, we
compute the challenge set I, and then we check that it corresponds to the votes that were
included. Also, for each pair (Rρi , Rρi+1

), we check that Rρi < Rρi+1
.

Let SignRep′ and VerifyRep′ denote the modified versions of the SignRep and
VerifyRep algorithms as described above. Then the algorithms Setup, GenCred,
GenNym, Vote, SignRep′, and VerifyRep′ constitute an ε-sound scheme for signa-
tures of reputation. In Appendix F, we prove this in the random oracle model.

7 Conclusion and Open Problems

In summary, we have provided a formalization of the concept of signatures of reputation
and a construction that meets our definitions. Our construction supports monotonic
measures of reputation in a completely anonymous setting. In our system, a user can
express trust in others by voting for them, collect votes to build up her own reputation,
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and attach a proof of her reputation to any data she publishes, all while maintaining the
unlinkability of her actions.

Because this work concerns a novel concept, many interesting open questions remain.
Most importantly, how can we support non-monotonic reputation systems, which can
express and enforce “bad” reputation as well as good? Answering this question will require
innovative definitions as well as cryptographic constructions. Other challenges include
devising a scheme which maintains privacy despite a malicious registration authority and
handling measures of reputation more expressive than the vote counting of in this paper.
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A Hardness of SCDH in Generic Groups

The SCDH (“stronger than CDH”) assumption may be stated as follows.
Let e : G1 × G2 → GT be a bilinear map, where the groups G1,G2,GT are of prime

order p. Let ϕ : G2 → G1 be an efficiently computable isomorphism. Assume g2 is a

generator of G2 and let g1 = ϕ(g2). Let ρ ∈ Z∗p. Select r, s
R←− Zp \ {−ρ}, h

R←− G1,

u, v
R←− G2. Then given

ρ, g1, h, g2, u, v, u
r, vs, gr1, h

s, g
1
ρ+r

2 , g
1
ρ+s

2 ,

it is computationally infeasible to output a triple (z, zr, zs) ∈ G3
1 where z 6= 1.

We prove this in the generic group model [Sho97] by providing an upper bound on
the probability that an adversary is able to output such a triple.

The generic group formulation of SCDH. In this model, we assume elements of G1, G2,
and GT are identified only by random string identifiers. Specifically, we identify the
elements of G1 using an injective map ξ1 : Zp → {0, 1}k selected uniformly at random,
where k is sufficiently large that we will assume the adversary cannot guess any valid
element identifiers. For any x ∈ Zp, the identifier ξ1(x) represents the element gx1 ∈ G1.
The elements of G2 and GT are similarly identified via maps ξ2 and ξ3. To select the
random elements h, u, v, we select random exponents x, y1, y2 and let h = gx1 , u = gy12 ,
and v = gy22 ; in this way their identifiers may be computed using ξ1 and ξ2.

The adversary will start with the identifiers of the elements in the challenge and
must query an oracle O to compute the group operation in any of the three groups, to
evaluate the bilinear map, or to evaluate ϕ. Upon termination, it must output three
strings π, π′, π′′ ∈ {0, 1}k. If there exists a z ∈ Zp such that π = ξ1(z), π′ = ξ1(zr), and
π′′ = ξ1(zs), then the adversary has won the game.

Theorem A.1. For any adversary A making at most q queries to the oracle O,

Pr

 AO
(
p, ρ, ξ1(1), ξ1(x), ξ1(r), ξ1(xs), ξ2(1), ξ2(y1),

ξ2(y2), ξ2(y1r), ξ2(y2s), ξ2

(
1
r+ρ

)
, ξ2

(
1
s+ρ

))
= π, π′, π′′ ∧

∃z ∈ Zp such that π = ξ1(z), π′ = ξ1(zr), and π′′ = ξ1(zs)

∣∣∣∣∣ x, y1, y2
R←− Zp

r, s
R←− Zp \ {−ρ}

∣∣∣∣∣
 ≤ 24(q + 11)2

p
.

Proof. Our proof employs the following strategy. First, we define an alternative (the
“formal game”) to the real game described above. Next, we show that it is impossible
for the adversary to win the formal game. Finally, we show that with probability at least

1− 24(q+11)2

p , the view of an adversary that played the formal game is identical to what
their view would have been if they were playing the real game.

The formal game. In this version of the game, the oracle O ignores the actual values of
x, y1, y2, r, and s and instead treats them as formal variables X, Y1, Y2, R, and S (the
exponent ρ is treated differently, as will be explained).

Specifically, O maintains three lists L1, L2, L3 of pairs. In each pair (π, F ), π is an
identifier string and F is a rational function with indeterminates X,Y1, Y2, R, S. That is,
F is a member of the field of rational functions Zp(X,Y1, Y2, R, S). The elements of the
field Zp(X,Y1, Y2, R, S) may be considered to be (multivariate) polynomial fractions P

Q ,

where P and Q are in the polynomial ring Zp[X,Y1, Y2, R, S]. More precisely, F is an
equivalence class of such fractions, where P1

Q1
= P2

Q2
if P1Q2 = P2Q1. In the following, we

identify a rational function F with the representative element of its equivalence class P
Q

that is written in lowest terms (i.e., gcd(P,Q) = 1).
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Each list is initialized with the identifiers of and the polynomial fractions correspond-
ing to the challenge values in each of the three groups. So initially

L1 = ((π1,1, 1), (π1,2, X), (π1,3, R), (π1,4, XS))

L2 =

(
(π2,1, 1), (π2,2, Y1), (π2,3, Y2), (π2,4, Y1R), (π2,5, Y2S),

(
π2,6,

1

R+ ρ

)
,

(
π2,7,

1

S + ρ

))
L3 = () .

Note that only X, Y1, Y2, R, and S are indeterminates in the above polynomial fractions;
ρ is simply a constant in Zp. Now whenever the adversary makes a query to perform the
group operation in G1 on π1,i and π1,j (including a selection bit specifying whether they
wish to multiply or divide), we look up in list L1 the corresponding polynomial fractions
F1,i, F1,j and compute F = F1,i±F1,j . We check whether F (in a canonical form) already
exists in L1 and, if so, return the corresponding identifier. Otherwise, we randomly select
a new identifier π and append (π, F ) to L1. Queries for the group operations in G2

and GT are answered analogously. To answer queries for the bilinear map, we compute
F = F1,i · F2,j and check L3 for F , again, adding it if it was not already present. To
answer queries for the isomorphism ϕ applied to some F2,i, we simply check L1 for F2,i.

We now argue that it is impossible for the adversary to win when O responds to
queries using the rules of the formal game. In order to win, the adversary must construct
polynomial fractions F1,i1 , F1,i2 , and F1,i3 in L1, where F1,i2 = F1,i1 ·R, F1,i3 = F1,i1 ·S,
and F1,i1 6= 0. However, any F1,∗ which the adversary can construct in L1 is of the form

F1,∗ = a1 + a2X + a3R+ a4XS + a5Y1 + a6Y2 + a7Y1R+ a8Y2S +
a9

R+ ρ
+

a10
S + ρ

,

where a1, . . . , a10 ∈ Zp.4 So if F1,i2 = F1,i1 · R, then F1,i1 must be of the form F1,i1 =
a3+a7Y1. Similarly, if F1,i3 = F1,i1 ·S, then F1,i1 must be of the form F1,i1 = a4X+a8Y2.

So if the adversary is to output a triple F1,i1 , F1,i2 , F1,i3 satisfying F1,i2 = F1,i1 · R
and F1,i3 = F1,i1 · S, then the only possibilities values for F1,i1 are

({a3 + a7Y1 | a3, a7 ∈ Zp} ∩ {a4X + a8Y2 | a4, a8 ∈ Zp}) \ {0} = ∅ .

Thus, the adversary cannot win when the oracle follows the rules of the formal game.

The real game. Next, we argue that, with probability at least 1− 24(q+11)2

p , an adversary
playing the formal game receives oracle query answers distributed identically to those it
would have received in the real game.

We might imagine two ways the formal game could differ from the real game. The
first would be for the oracle to give out a previously returned identifier when it should
have selected a new one. This would happen if the adversary made a query on two
rational functions and the result was formally identical to a previous rational function,
but when evaluated on the specific values x, y1, y2, r, s, the two differed. Of course, this
cannot happen. If two rational functions are identical, they will have the same value
when evaluated.

The other way the formal game could differ from the real game would be for the oracle
to give out a new identifier when it should have given an existing one. That is, if the oracle
returned the identifier of a new rational function F1 = P1

Q1
which was not formally equal to

an existing one F2 = P2

Q2
(that is, P1Q2 6= P2Q1), but F1(x, y1, y2, r, s) = F2(x, y1, y2, r, s).

4Note that the adversary is capable of incorporating ρ into the values a1, . . . , a10, for example, setting
a1 = 4ρ or a3 = ρ−5.
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This case is indeed possible, but we argue that it occurs with probability (over the se-

lection of x, y1, y2, r, s) at most 24(q+11)2

p . Specifically, F1(x, y1, y2, r, s) = F2(x, y1, y2, r, s)
iff

P1(x, y1, y2, r, s)Q2(x, y1, y2, r, s) = P2(x, y1, y2, r, s)Q1(x, y1, y2, r, s) ,

that is, iff

P1(x, y1, y2, r, s)Q2(x, y1, y2, r, s)− P2(x, y1, y2, r, s)Q1(x, y1, y2, r, s) = 0 .

So we see that the oracle only gives an incorrect reply to a query on F1 = P1

Q1
and F2 = P2

Q2

if x, y1, y2, r, s is a root of the polynomial P1Q2 − P2Q1. We bound the probability of
x, y1, y2, r, s being a root based on the degree of the polynomial.

Specifically, for any P1

Q1
and P2

Q2
in L1,

deg(P1Q2 − P2Q1) ≤ max(deg(P1Q2),deg(P2Q1))

= max(deg(P1) + deg(Q2),deg(P2) + deg(Q1))

≤ max(4 + 2, 4 + 2)

= 6 ,

so P1Q2 − P2Q1 will have at most 6 roots. The probability that a query for the group
operation in G1 will return the wrong result is thus at most 6

p . The case of queries for

the group operation in G2 is similar and results in the same bound. If P1

Q1
and P2

Q2
are in

list L3 (i.e., they are the result of pairing queries), we obtain the following bounds.

deg(P1Q2 − P2Q1) ≤ max(8 + 4, 8 + 4)

= 12 ,

So the probability of that type of query being answered incorrectly is at most 12
p .

Now since the adversary is initially given 11 identifiers and makes at most q queries,
the number of distinct queries it can make for either the group operation in G1, the group
operation in G2, or the pairing is at most (q + 11)2. So the total probability of at least
one query being answered incorrectly is at most

(q + 11)2
6

p
+ (q + 11)2

6

p
+ (q + 11)2

12

p
=

24(q + 11)2

p
.

B Unforgeability of the Signature Scheme

We distinguish the following four types of forgeries which the adversary may attempt.

• Type 1 forgery. In the forgery, the adversary uses a ρ∗ value that never appeared.
This will break the BB-HSDH assumption by a trivial reduction.

• Type 2 forgery. In the forgery, the adversary uses ρ∗ = ρj , but there exists k,
such that r∗k 6= rj,k.

– Case 1: r∗k = γ.

This breaks the BB-CDH assumption.

Suppose the simulator obtains a BB-CDH instance (see Section 4).
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The adversary commits to q messages to be signed. The simulator chooses the
parameters of the signature scheme, such that the variables γ, g, ĝ inherit the
corresponding variables from the BB-CDH instance. For all 1 ≤ i ≤ `, the
simulator also chooses ûi = ûτi , such that it knows their discrete logs τi (base
û). The remaining parameters are picked directly.

In the q signatures returned to the adversary, the simulator uses ρ = ρ1, . . . , ρq
respectively. Although the simulator does not know the secret signing key
γ, it clearly has enough information to compute the signatures shown to the
signature adversary.

When the adversary outputs a Type 2-Case 1 forgery, it contains the term
ûγk . As the simulator knows the discrete log of ûk base û, it can compute ûγ ,
thereby breaking the BB-CDH assumption.

– Case 2: r∗k ∈ {rj,1, . . . , rj,`, sj,1, . . . , sj,`}\{rj,k}.
Similar to Case 1, this also breaks the BB-CDH assumption. In particular, by
renaming variables and letting q = 1, the BB-CDH assumption immediately
implies the following assumption henceforth referred to as BB-CDH-1. Given
the tuple

g, ĝ, gr, ĝr, û, ρ, ĝ
1
r+ρ ,

it is computationally infeasible to output ûr.

We now show that if an adversary can succeed in a Type 2-Case 2 forgery, we
can build a simulator that breaks the above BB-CDH-1 assumption.

The adversary first commits to q messages to be signed. The simulator guesses
the j and k′ 6= k such that ρ∗ = ρj and r∗k = rj,k′ . The case when r∗k = sj,k′′

(1 ≤ k′′ ≤ `) is similar, so here, without loss of generality, we prove the case
for r∗k = rj,k′ .

When choosing parameters, the simulator inherits the g, ĝ values from the BB-
CDH-1 instance. The simulator lets ûk = û. For i 6= k, the simulator picks

ûi = ĝτi . The simulator picks f1 = x−1j,k′g
τ where τ

R←− Zp. The simulator
picks the remaining parameters directly.

Now the simulator computes the signatures for the q messages specified by
the adversary at the beginning of the game. For all except the j-th (message,
signature) pair, the simulator computes all other signatures directly.

For the j-th signature, the simulator builds the ρ value from the BB-CDH-
Derived instance into the signature: ρj = ρ. In addition, it builds the r
value into the k′-th coordinate, that is, the simulator implicitly lets rj,k′ = r.
Although the simulator does not know r, it can compute the term ûrk′ as it
knows the discrete log of ûk′ base ĝ. In addition, the term (xj,k′f1)r = (gr)τ

can also be computed partly due to the way f1 was chosen earlier. It is clear
that the rest of the signature can be computed directly.

If the adversary outputs a forgery of this type, the forged signature contains
ûrk = ûr, thereby breaking the BB-CDH-1 assumption.

– Case 3: r∗k /∈ {rj,1, . . . , rj,`, sj,1, . . . , sj,`}, and and r∗ 6= γ. This breaks the BB-
HSDH assumption. In particular, by renaming variables, and letting q = 2`+1,
the BB-HSDH assumption states that given

ĝ, ĝρ, û, g, gρ, γ, g
1

ρ+γ , (ri, ĝ
1

ρ+ri )1≤i≤`, (si, ĝ
1

ρ+si )1≤i≤`

it is hard to output (gr
∗
, ûr

∗
, g

1
ρ+r∗ ), where r∗ /∈ {r1, . . . , r`, s1, . . . , s`, γ}. The

simulator obtains this instance, and performs the following interactions with
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the adversary. The adversary first commits to q messages to be signed. Now
the simulator picks the parameters of the signature scheme to inherit the g, ĝ, γ
variables from the above BB-HSDH instance. It picks h = gτ1 ,ĝ0 = ĝτ2 , so that
the simulator knows the exponents τ1, τ2, and can compute hρ and ĝρ0 from gρ

and ĝρ respectively. For all 1 ≤ i ≤ `, the simulator picks ûi = ûµi . The
simulator picks the remaining parameters directly.

The simulator guesses the j in which ρ∗ = ρj . In the j-th signature returned to
the adversary, the simulator uses the ρ and {ri, si}1≤i≤` values from the above
BB-HSDH instance. It is not hard to see that the simulator has sufficient
information to compute a signature for the j-th message. For all other q − 1
(message, signature) pairs, the simulator computes their signatures directly.

If the adversary can succeed in a forgery of this case, the simulator can obtain

the tuple (gr
∗
k , û

r∗k
i = (ûr

∗
k)µk , ĝ

1
ρ+r∗

k ), thereby solving the above BB-HSDH
instance.

• Type 3 forgery. In the forgery, the adversary uses ρ∗ = ρj , r
∗
j = rj,i for all

1 ≤ i ≤ `, but there exists k, such that s∗k 6= sj,k. The proof is similar to Type 2
forgery.

• Type 4 forgery. In the forgery, the adversary uses ρ∗ = ρj , r
∗
j = rj,i and s∗j = sj,i

for all 1 ≤ i ≤ `, but there exists a k such that x∗k 6= xj,k. This breaks the
SCDH assumption through the following reduction. The simulator is given an SCDH
instance (see Section 4), and performs the following interactions with the adversary.

The adversary first commits to q messages to be signed. The simulator guesses the
j in which ρ∗ = ρj ,∀i : r∗i = rj,i and s∗i = sj,i. When setting up parameters of
the signature scheme, the simulator inherits the ĝ, g, h value from the above SCDH
instance. For all 1 ≤ i ≤ `, it lets ûi = ûµi , v̂i = v̂νi . The simulator also lets

f1 = x−1j,kg
τ , and f2 = x−1j,kh

ωwhere τ, ω
R←− Zp.

Now the simulator constructs signatures on the q specified messages and return
them to the adversary. Except for the j-th (message, signature) pair, the simulator
constructs all other (message, signature) pairs directly.

For the j-th signature, the simulator uses the following strategy. It builds the ρ
value from the SCDH instance into the j-th signature, that is ρj = ρ. In addition,
it builds the r, s values from the SCDH instance into the k-th coordinate, that
is, rj,k = r, sj,k = s. Although the simulator does not know the values of r, s, it
knows or can compute all of the following terms in the signature. In particular,
(xj,kf1)r = (gr)τ , (xj,kf2)s = (hs)ω. ûrk and v̂sk can be computed as the simulator
knows their discrete logs base û and v̂ respectively. All the remaining terms are
trivially computable.

If the adversary success in a Type 3 forgery, the resulting signature contains (x∗, (x∗f1)r, (x∗f2)s)
where x∗ 6= xj,k. The simulator can thereby compute z, zr, zs, where z = x∗x−1j,k 6=
1, by dividing (x∗, (x∗f1)r, (x∗f2)s) and (xj,k, (xj,kf1)r, (xj,kf2)s) coordinate-wise.
This clearly breaks the SCDH assumption.

C IK-CPA Security: Definition and Proof

IK-CPA security was first defined by Bellare et. al. [BBDP01]. The IKEnc described
in Section 4 has IK-CPA security, that is, no polynomial-time adversary has more than
negligible advantage in the following game:
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Setup. The challenger returns to the adversary the public parameters of the encryption
system paramsike, and two user public keys upkike,0 and upkike,1.

Challenge. The adversary submits two messages msg0 and msg1. The challenger flips a
random coin b, and returns IKEnc.Enc(paramsike, upkike,b,msgb) to the adversary.

Guess. The adversary outputs a guess b′ of b. The adversary wins the game if b′ = b.

Remark 1. The above security definition should still hold when upkike,0 = upkike,1 =
upkike. In this case, the security definition is equivalent to the standard IND-CPA security
(under a specific user public key upkike).

Proof. Consider the following hybrid sequence. In Game 0, the challenger encrypts msg0
under upkike,0 in the challenge stage. In Game R, the challenger returns to the adversary

a random ciphertext in the challenge stage, that is, (R1, R2, R3)
R←− G3. In Game 1, the

challenger encrypts msg1 under upkike,1 in the challenge stage.
Below we prove that Game 0 is computationally indistinguishable from Game M. (The

indistinguishability between Game 1 and Game M is similar, and hence omitted.)
Suppose a simulator obtains the following DLinear instance:

f, h,A,B
R←− G, fr, hs, T

It tries to distinguish whether T
R←− G or T = ArBs. See Definition 8 for more details on

this DLinear variant.
Now the simulator sets up the public parameters of the encryption scheme to be

f, h. It chooses upkike,0 = (A,B), and it picks (upkike,1, uskike,1) by directly calling the
IKEnc.GenKey algorithm. In the challenge stage, the adversary submits two messages
msg0 and msg1. The simulator returns the following ciphertext to the adversary:

msg0 · T, fr, hs

It is not hard to see that if T = ArBs, then the above simulation is identical to Game 0.
Otherwise, it is identical to Game R.

D Security Definitions and Proofs for the Unblinded
Scheme

D.1 Definitions

Voter anonymity. No polynomial-time adversary has more than negligible advantage in
the following game.

Setup. The challenger gives the adversary all users’ rcvkey and vpk. At this stage, the
challenger retains all vsk to itself.

Corrupt. The adversary adaptively corrupts a user by learning its secret voting key
vsk.

Vote. The adversary requests an unblinded vote from an uncorrupted voter to a recip-
ient.

Challenge. The adversary submits two uncorrupted voters j∗0 and j∗1 , and a recipient
i. The adversary must not have previously queried a vote from either j∗0 or j∗1 to i.
The challenger flips a random coin b, and returns an unblinded vote from j∗b to i.
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ShowRep. The adversary specifies a signer i, and a list of voters j1, . . . , jc, and signer i
constructs rep based on votes from these voters. Notice that this may involve votes
from j∗0 or j∗1 to i. rep is returned to the adversary.

Guess. The adversary outputs a guess b′ of b, and wins the game if b′ = b.

Vote unforgeability. No polynomial-time adversary has more than negligible advantage in
the following game.

Setup. The challenger gives the adversary all users’ rcvkey and vpk.

Corrupt. The adversary adaptively corrupts a user by learning its vsk.

Vote. The adversary requests a vote from an uncorrupted voter to a recipient.

ShowRep. The adversary specifies a signer i, and a list of voters j1, . . . , jc. User i
constructs rep based on votes from these voters, and returns it to the adversary.

Forge. The adversary outputs a vote from an uncorrupted user j∗ to a recipient i∗.
The adversary wins if the vote is correct, and it has not previously queried a vote
from j∗ to i∗.

Reputation anonymity. No polynomial-time adversary has more than negligible advantage
in the following game.

Setup. The challenger generates n users, and reveal all users’ keys including rcvkey, votekey
to the adversary.

Challenge. The adversary chooses a user i∗, and a list of c voters j1, . . . , jc. The
challenger flips a random coin b, and depending on the value of b, it returns to the
adversary either faithfully constructed rep, or a list of random numbers.

Guess. The adversary outputs a guess b′ of b, and wins the game if b′ = b.

D.2 Reputation Anonymity Proof

We prove the DLinear based instantiation.

Definition 8 (n-DLinear). Given (g, h, z1,1, z1,2, z2,1, z2,2, . . . , zn,1, zn,2)
R←− G2n+2, and

gr, hs, where r, s
R←− Zp, it is computationally infeasible to distinguish the following tuple

from a completely random tuple:

T = (zr1,1z
s
1,2, z

r
2,1z

s
2,2, . . . , z

r
n,1z

s
n,2)

Proof. We now prove that the n-DLinear assumption is implied by the DLinear assump-
tion. Let 0 ≤ d ≤ n, let Γi = zri,1z

s
i,2. Define a hybrid sequence: in the Game d (0 ≤ d ≤

n), the challenger gives the adversary g, h, gr, hs, z1,1, z1,2, z2,1, z2,2, . . . , zn,1, zn,2, and the
following tuple:

∗, ∗, . . . , ∗,Γd+1, . . . ,Γn

where each ∗ denotes an independent random element from G.
Due to the hybrid argument, it suffices to show that no PPT adversary can distinguish

any two adjacent games.
We now show that no PPT adversary can distinguish between Game d and Game

d − 1, where 1 ≤ d ≤ n. Suppose a simulator gets a DLinear instance g, h, f, gr, hs, X,
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it tries to tell whether X = fr+s or X
R←− G. It picks zd,1 = f, zd,2 = fhτ . For all

i 6= d, the simulator picks zi,1 = gωi , zi,2 = hµi . Now the simulator gives the adversary
g, h, gr, hs, z1,1, z1,2, z2,1, z2,2, . . . , zn,1, zn,2, and the following tuple:

∗, ∗, . . . , ∗, X · (hs)τ , (gr)ωd+1(hs)µd+1 , . . . , (gr)ωn(hs)µn

Clearly, the above game is equivalent to Game d − 1 if X = fr+s. Otherwise, it is
equivalent to Game d.

Now we build a simulator that leverages an adversary against reputation anonymity
to break the n-DLinear assumption. When choosing all users’ upk and usk values, the
simulator inherits the zi,k values from the n-DLinear assumption, where 1 ≤ i ≤ n, k ∈
{1, 2}. It picks xi,1 = gτi,1 , yi,1 = gωi,1 , and xi,2 = hτi,2 , yi,2 = hωi,2 for all 1 ≤ i ≤ n. It
picks all other parameters in upk and usk directly.

In the challenge phase, the simulator computes rep as below:

∀1 ≤ j ≤ m : urj,1u
s
j,2 = (x

αj
i,1y

βj
i,1)r(x

αj
i,2y

βj
i,2)s · Tj

where Tj is inherited from the n-DLinear instance. As the simulator knows the discrete-
log of xi,1 and yi,1 base g, and the discrete-log of xi,2 and yi,2 base h, the simulator can

compute the term (x
αj
i,1y

βj
i,1)r(x

αj
i,2y

βj
i,2)s.

It is not hard to see that if T is a true n-DLinear tuple, the above constructed rep is
faithful. Otherwise, it is a random tuple.

D.3 Voter Anonymity Proof

Game 1: answering ShowRep queries at random. First, modify the voter anonymity game
such that when the adversary makes ShowRep queries, the challenger simply returns a list
of random numbers. Answering ShowRep queries randomly does not affect the adversary’s
advantage in winning the voter anonymity game.

To see why, observe that it is computationally infeasible to distinguish between Game
1 and the real voter anonymity game. This can concluded from reputation anonymity
and a simple hybrid argument.

Reduction to the DLinear assumption. We can now reduce voter anonymity to the DLinear
assumption.

Below, we prove the real-or-random version of voter anonymity.
Notice that DLinear implies that the following problem is hard: Given

g, h, gα, hβ , u1, v1, u2, v2, T

it is computationally infeasible to distinguish whether T = (uα1 v
β
1 , u

α
2 v

β
2 ) or T

R←− G2. In
fact, this is a special case of the n-DLinear assumption mentioned above, with n = 2.

• Setup. The simulator obtains the above 2-DLinear instance. It inherits the pa-
rameters g, h from the 2-DLinear instance. It guesses the challenge voter j∗ and
recipient i∗. It picks xi∗,k = uk, yi∗,k = vk for k ∈ {1, 2}. For all i 6= i∗, pick
xi,k = gτi,k , yi,k = hωi,k for k ∈ {1, 2}. In addition, the simulator lets αj∗ = α,
βj∗ = β. The remaining parameters are picked directly. It is not hard to see that
the simulator can compute all users vpk and rcvkey, which the simulator releases to
the adversary at the beginning of the game.
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• Corrupt. If the targeted user is j∗, abort. Otherwise, return to the adversary the
user’s vsk.

• Vote. If the vote queried is from j∗ to i∗, abort. Otherwise, if the voter is j∗ and
the recipient is i 6= i∗, compute the vote as follows:

[(gα)τi,k(hβ)ωi,kzj∗,k]k∈{1,2}

Else if the voter is not j∗, compute the vote directly.

• ShowRep. Return a random tuple.

• Challenge. If the challenger voter and recipient are not j∗ and i∗, abort. Other-
wise, return the following vote:

(T1zj∗,1, T2zj∗,2)

Clearly, if T = (T1, T2) is a true 2-DLinear instance, the above vote is correctly
constructed. Otherwise, it is a random pair.

D.4 Vote Unforgeability Proof

• Setup. The simulator obtains a CDH instance g, gα, h. It tries to output hα.

The simulator guesses the voter j∗ and recipient i∗ in the forged vote output by the
adversary. It implicitly lets αj∗ = α. It picks xi∗,k = hτi∗,k where k ∈ {1, 2}. For
any user i 6= i∗, the simulator picks xi,k = gτi,k where k ∈ {1, 2}. The simulator
picks the remaining parameters directly. It is not hard to see that the simulator
can compute all users vpk and rcvkey, which the simulator releases to the adversary
at the beginning of the game.

• Corrupt. If the targeted user is j∗, abort. Otherwise, give away the user’s vsk to
the adversary.

• Vote. If the requested vote is from j∗ to i∗, abort. If the requested vote is from j∗

to i 6= i∗, the simulator computes the vote as follows:

[(gα)τi,ky
βj∗

i,k zj∗ ]k∈{1,2}

If the requested vote is from j 6= j∗ to any user i, the simulator computes the vote
directly.

• ShowRep. Return a random tuple. Like in the voter anonymity game, this change
should not affect the adversary’s probability in winning the vote unforgeability
game.

• Forge. When the adversary outputs a vote from j∗ to i∗, the simulator can compute
hα as below. First, denote the vote as (u1, u2). Now, compute hα as below:

(u1z
−1
j∗,1y

−βj∗
i∗,1 )

1
τi∗,1
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E Security Proofs for the Full Scheme

Theorem E.1. The algorithms Setup, GenCred, GenNym, Vote, SignRep, and
VerifyRep defined in Section 5 constitute a correct, receiver anonymous, voter anony-
mous, signer anonymous, and sound scheme for signatures of reputation.

In this section, we provide proofs for each of the four security properties defined in
Section 3. We begin by proving a series of lemmas we will need.

In the three privacy games (receiver, voter, and signer anonymity), the adversary
outputs a challenge, which varies from game to game, and challenger responds based on
a coin flip b. In the proofs in this section, it will be convenient to refer to each of these
as an oracle query the adversary can make, so we define the following additional oracle
queries which correspond to the challenge stage of each game:

Ch RecvAnon. On input (i∗0, i
∗
1), select b

R←− {0, 1} and respond with
nym∗ ← GenNym(params, credi∗b ).

Ch SignerAnon. On input (j∗0 , j
∗
1 , nym

∗), select b
R←− {0, 1} and respond with

vt∗ ← Vote(params, credj∗b , nym
∗).

Ch VoterAnon. On input (i∗0, i
∗
1, V

∗
0 , V

∗
1 ,msg), select b

R←− {0, 1} and respond with
Σ∗b ← SignRep(params, credi∗b , V

∗
b ,msg).

We now go to prove the first lemma we will need.

E.1 Traceability

Intuitively, traceability means that all nyms, votes and signatures of reputation must be
traceable to registered recipients and voters.

In the following, we refer to an additional opening algorithm OpenSigRep which
works exactly like OpenNym and OpenVote. That is, it uses the extractor key xk to
obtain the rcvkey of the signer from the commitment in the NIZK within the signature.

Lemma E.2. No polynomial-time adversary has more than negligible advantage in the
following game.

Setup: The challenger runs the Setup algorithm, registers n users, and returns params
and all users’ credentials to the adversary.

Forge: The adversary wins the game if one of the following occurs:

• The adversary outputs a valid nym∗ and OpenNym(params, openkey, nym∗) =
⊥.

• The adversary outputs a valid vote vt∗ and OpenVote(params, openkey, vt∗) =
⊥.

• The adversary outputs a valid signature of reputation Σ∗ and OpenSigRep(params, openkey,Σ∗) =
⊥.

In the above, “valid” means that the nym∗, vt∗ or Σ∗ passes the corresponding verification
algorithm.

We also refer to the above as nym traceability, vote traceability, signature of reputation
traceability respectively.

Proof. We prove the case for signature of reputation traceability. The other cases are
similar if not easier. There are 2 possible cases if OpenSigRep(params, openkey,Σ∗) = ⊥:
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• Case 1: The OpenSigRep algorithm uses the extractor key xk of the GS proof
system to extract the signer’s pub cred = (rcvkey, vpk, vkbb, upkike), and a certificate
on the above tuple. The pub cred extracted is not among the registered users.

• Case 2: Use xk to extract a list of votes, and now further use OpenVote on these
votes to extract a set S of c distinct voters, more specifically, for each j ∈ S, extract
pub credj = (rcvkeyj , vpkj , vkbbj , upkikej) and a certificate for each pub credj . There
exists a j ∈ S such that pub credj is not among the registered users.

If either of the above cases is true, we can build a simulator that breaks the security
of the certification scheme, or more specifically, the existential unforgeability under the
weak chosen message attack (henceforth referred to as weak EF-CMA security).

At the beginning of the game, the simulator picks pub credi = (rcvkeyi, vpki, vkbb,i, upkike,i)
for all 1 ≤ i ≤ n, and the corresponding secret keys vski, skbb,i, uskike,i. The simulator
submits all pub credi (1 ≤ i ≤ n) to the weak EF-CMA challenger C. The EF-CMA chal-
lenger now returns to the simulator the public verification key vkcert of the certification
scheme, as well as n certificates on the submitted messages. With this, the simulator has
chosen the vkcert for our reputation system, as well as the user credentials for n users.
The simulator picks the other required system parameters directly.

The simulator now releases all users’ secret credentials to a traceability adversary,
which outputs a forgery consisting of a signature of reputation Σ∗. No matter which of
the above case is true, the simulator is able to extract a pub cred that does not match any
registered user, and a certificate for pub cred. In this way, the simulator has forged a cer-
tificate on a new message, thereby breaking the weak EF-CMA security of the certification
scheme.

E.2 Non-frameability

Lemma E.3. No polynomial-time adversary has more than negligible advantage in the
following game.

Setup: The challenger runs the Setup algorithm, registers n users, and returns params
to the adversary.

Query : The adversary adaptively makes Corrupt, Nym, Vote and SignRep queries to
the challenger. The adversary can also make any of the challenge queries, including
Ch RecvAnon, Ch SignerAnon, Ch VoterAnon queries.

Forge: The adversary wins the game if it succeeds in one of the following forgeries:

• Nym forgery. The adversary outputs a forged nym∗. nym∗ has not been re-
turned to the adversary by a previous Nym (or Ch RecvAnon) query. In ad-
dition, OpenNym(params, openkey, nym∗) = i∗, and i∗ is not among those
corrupted by the adversary through a Corrupt query.

• Vote forgery. The adversary outputs a forged vote vt∗. vt∗ has not been
returned to the adversary by a previous Vote (or Ch VoterAnon) query, and
vt∗ opens to a voter j∗ who has not been compromised by the adversary through
a Corrupt query.

• Signature of reputation forgery. The adversary outputs a forged signature
of reputation Σ∗. Σ∗ has not been returned to the adversary by a previous
SignRep (or Ch SignerAnon) query, and Σ∗ opens to a signer i∗ who has not
been compromised by the adversary through a Corrupt query.
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Proof. We prove the case for nym non-frameability. The proofs for vote non-frameability
and signature of reputation non-frameability are similar.

First, notice that the (skots
∗, vkots

∗) used in nym∗ must agree one of those previously
seen by the adversary in a Nym, Vote or SignRep query on the same user i∗. Otherwise,
we can build a simulator that breaks the security of the BB-signature scheme, specifically,
the existential unforgeability under the weak chosen message attack (henceforth referred
to as weak EF-CMA security.) Groth used a similar argument in his group signature
scheme [Gro07]. Below we describe this reduction in detail.

The simulator guesses i∗ at the beginning of the game. If the guess turns out to
be wrong later in the game, the simulator aborts. The simulator guesses correctly with
probability at least 1/n, where n denotes the total number of registered users.

The simulator obtains a verification key V = gs ∈ G from the BB signature challenger.
The simulator picks user i∗’s verification key vkbb,i∗ to be V . Notice that the simulator
does not know the corresponding signing key vkbb,i∗ = s. The simulator picks the other
elements of user i∗’s credential directly, and signs a certificate for it. The simulator need
not know vkbb,i∗ = s to produce the certificate, as the certificate signs vkbb,i∗ = V rather
than the secret signing key s.

The simulator chooses q random (skots,1, vkots,1), . . . , (skots,q, vkots,q) pairs, and queries
the BB signature challenger for signatures on H(vkots,1), . . . ,H(vkots,q). Whenever the
adversary makes a Nym, Vote, or SignRep query, the simulator consumes one of these
(skots,i, vkots,i) where 1 ≤ i ≤ q.

When the adversary outputs a forged nym∗ with a vkots
∗ never seen before, the simula-

tor uses, the extractor key to open the NIZK, and obtains a new pair (H(vkots
∗ ),BBSig.Sign(H(vkots

∗ ))).
Due to the collision resistance of the hash function, H(vkots

∗ ) /∈ {H(vkots,1), . . . ,H(vkots,q)}
(except with negligible probability). This breaks the weak EF-CMA security of the BB
signature scheme.

As the vkots
∗ used in nym∗ agrees with one seen before (in a Nym, Vote, or SignRep

query from i∗), nym∗ must agree with a previously seen nym∗ from user i∗. ( nym∗ cannot
agree with a previously seen vote or signature of reputation from i∗.) Otherwise, the
nym∗ would contain a one-time signature signed with skots

∗ on a new message, where the
message contains all of nym∗ except the one-time signature part. This breaks the security
of the one-time signature scheme through a simple reduction.

E.3 Unforgeability

Lemma E.4. No polynomial-time adversary has more than negligible advantage in the
following game.

Setup. The challenger sets up system parameters, registers n users, and returns params
to the adversary.

Query. The adversary adaptively makes Corrupt, Nym, Vote, SignRep queries.

Forge. The adversary wins the game if it succeeds in either of the following types of
forgeries:

• Vote forgery. The adversary outputs a vote vt∗ such that OpenVote(params, openkey, vt∗) =
(j, i), where j has not been corrupted through a Corrupt query, and the adver-
sary has not previously submitted a Vote query from user j to any nym that
opens to i.

• Signature of reputation forgery. The adversary outputs a signature of repu-
tation Σ∗. Suppose OpenSigRep opens Σ∗ to the recipient i and c voters
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j1, . . . , jc. There exists j ∈ {j1, . . . , jc} such that j has not been corrupted
through a Corrupt query, and the adversary has not previously submitted a
Vote query from user j to a nym which opens to i.

Proof. By reduction to vote unforgeability of the unblinded scheme. We will perform the
simulation under a simulated crs. This means that we can no longer rely on the extractor
key xk to open the NIZK. However, notice that we can also implement the open algorithms
by decrypting the ciphertexts in the nyms, votes, and signatures of reputation. Notice
that under a real crs, opening using xk or through decryption yield the same result due
to the perfect soundness of NIZK.

Setup: The simulator chooses a simulated crs instead of a real crs, and it knows the
simulation secret simkey. The simulator obtains all users’ rcvkey and vpk from C,
the vote unforgeability challenger of the unblinded scheme. The simulator sets up
the parameters of CCAEnc such that it knows the decryption key. The simulator
picks all other system parameters directly. Notice that the simulator knows the
uskike for all users.

Corrupt : The adversary specifies a user i to corrupt. The simulator forwards the query
to C, and obtains the user’s vsk in return. The simulator returns the credential of
user i to the adversary.

Nym, SignRep: It is not hard to see that the simulator can answer Nym and SignRep
queries normally.

Vote: As the simulator has all users’ uskike, it is able to decrypt the ciphertext in the
specified nym, and identify the recipient i. See Appendix E.4 for more details on
how this step can be achieved.

Now the simulator forwards the voter j and the recipient i to C, and obtains an
unblinded vote from j to i. To compute the vote, the simulator encrypts the un-
blinded vote under IKEnc to obtain the term C1. Then it computes C2 normally.
It uses the simulation secret simkey to compute the NIZK, and eventually, uses the
one-time signature scheme to sign everything. It is not hard to see that a vote
computed in this way is identically distributed as a real vote under a simulated crs.

Forge: Eventually, the adversary outputs a forgery. If the forgery is a vote vt∗, the
simulator decrypts the IKEnc ciphertext in vt∗ to obtain an unblinded vote U∗.
Otherwise, if the forgery is a signature of reputation Σ∗, the simulator decrypts the
CCAEnc ciphertext in Σ∗ to obtain a list of unblinded votes, among which is U∗.
If the adversary wins the vote unforgeability game, then U∗ is from an uncorrupted
voter j to a recipient i, and the adversary has never made a Vote query from j
to a nym corresponding to i. This means that our simulator has broken the vote
unforgeability of the unblinded scheme.

E.4 Alternative implementation of OpenNym

In all of the games, when the adversary makes a SignRep query (or a Ch SignerAnon
query), the challenger needs to check if the set of votes supplied by the adversary cor-
respond to the recipient specified by the adversary. To do this, the challenger calls the
OpenNym algorithm to trace the owners of the nyms that are included in the votes.
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We now propose an alternative implementation of the OpenNym oracle.
First, we define a sub-routine called TestNym to test if a nym belongs to a specific

user.

TestNym(params, nym, credi). The TestNym subroutine checks if a nym is owned by
user i. Parse nym as nym = (vkots, C,Π, σots), where C = (C0, C1, C

′
1) consists of an

encryption of user i’s receiver key rcvkeyi (denoted C0) and two random encryptions
of 1 ∈ G (denoted C1 and C ′1). Let uskike,i denote the secret decryption key of user
i.

The TestNym algorithm first tests if the following equations are true:

IKEnc.Dec(paramsike, uskike,i, C) = rcvkeyi

IKEnc.Dec(paramsike, uskike,i, C1) = 1

IKEnc.Dec(paramsike, uskike,i, C
′
1) = 1

Next, The TestNym algorithm checks that the two encryptions of 1 are uncorre-
lated in the following sense. Let C1 = (c1, c2, c3), and let C ′1 = (c′1, c

′
2, c
′
3). The

algorithm makes sure that
e(c2, c

′
3) 6= e(c′2, c3) . (1)

If both of the above checks pass, the algorithm concludes that the nym’s owner is
user i.

Lemma E.5. If nym is generated by user i, then TestNym(params, nym, credi) returns
1 (except negligible probability). In addition, there exists at most one i ∈ {1..n} such that
TestNym(nym, credi) = 1.

Proof. The first direction is obvious: if nym is generated by user i, clearly, Test-
Nym(params, nym, credi) returns 1 (except negligible probability).

For the other direction, assume for the sake of contradiction that there exist 2 users
i 6= j ∈ {1..n} such that TestNym(nym, credi) = 1, and TestNym(nym, credj) = 1. This
means that there exist upkike,i = (Ai, Bi) 6= upkike,j = (Aj , Bj), and r1, s1, r2, s2 ∈ Zp,
and

Eupkike,i(1, r1, s1) = Eupkike,j(1, r2, s2)

Eupkike,i(1, r
′
1, s
′
1) = Eupkike,j(1, r

′
2, s
′
2)

Clearly, for the latter two terms in the ciphertext to be equal, r1 = r2 = r, and s1 = s2 =
s. Similarly, r′1 = r′2 = r′, and s′1 = s′2 = s′. For the first term in the ciphertext to be
equal, we obtain through basic algebra:

AriB
s
i = ArjB

s
j ⇒ (Ai/Aj)

r = (Bj/Bi)
s

Similarly,
(Ai/Aj)

r′ = (Bj/Bi)
s′

But this would break the second check in the TestNym algorithm (see Equation (1)
).

We now describe an alternative implementation of the OpenNym algorithm which
the simulator will use in the simulations. Let Sc denote the set of users that have been
corrupted by the adversary thus far. Let L = {nymk, idk}1≤k≤q denote the list of nyms
that have been returned to the adversary through a Nym query (or a Ch RecvAnon
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query). nymk is the nym returned to the adversary, and idk denotes the id of the user
specified in the query. (In the case of a Ch RecvAnon, idk should be the one of the two
users specified in the query, depending on the challenger’s coin.)

OpenNym :

Step 1: for i ∈ Sc : if TestNym(nym, credi) = 1 then return i;

Step 2: if nym ∈ L : return the corresponding id

Step 3: return ⊥

Remark 2. This means that the adversary essentially has enough information to perform
OpenNym itself, on any valid nym it is able to construct.

Lemma E.6. This alternative OpenNym procedure is correct in the real crs world, except
with negligible probability.

Proof. Due to nym traceability and unforgeability, except with negligible probability,
either 1) the nym agrees with one previously seen by the adversary; or 2) the nym opens
to a user within the adversary’s coalition (where the open operation is performed using
the extractor key.) Due to the perfect soundness of NIZK, for the second case, using the
extractor key or TestNym to open the nym would produce the same result.

Notice that the above alternative OpenNym implementation works in all games, even
though each game may have a different type of challenge query.

E.5 Signer Anonymity

We perform the simulation in the simulated crs world. This shouldn’t affect the adver-
sary’s advantage by more than negligible amount. Under a simulated crs, the NIZK has
perfect zero-knowledge. Therefore, the only terms in the signature of reputation that can
possibly reveal the signer is the encryption of the unblinded vote CCAEnc.Enc(U1, . . . , Uc),
and rep = ShowRep(U1, . . . , Uc).

In the challenge stage, the adversary submits two signers i0 and i1, and a list of votes
for each signer. Let ~U0 = (U0,1, . . . , U0,c), ~U1 = (U1,1, . . . , U1,c) denote the set of distinct
unblinded votes for i0 and i1 respectively. These unblinded votes may be obtained by
decrypting the ciphertexts in the votes.

Now consider the following hybrid sequence:

Game 0 : In Game 0, the challenger chooses user i0 to answer the challenge query. That
is,

Σ∗ =
(
. . . E0 = CCAEnc.Enc(~U0), rep0 = ShowRep(~U0), . . .

)
Game M : In Game M, the challenger encrypts the unblinded votes from i0, but uses

the unblinded votes from i1 in the ShowRep algorithm. In addition, it uses the
simulation secret simkey to construct the NIZK.

Σ∗ =
(
. . . E0 = CCAEnc.Enc(~U0), rep1 = ShowRep(~U1), . . .

)
Game 1 : In Game 1, the challenger chooses user i1 to answer the challenge query. That

is,

Σ∗ =
(
. . . E1 = CCAEnc.Enc(~U1), rep1 = ShowRep(~U1), . . .

)
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Game M and Game 1 are indistinguishable. We can prove this through a reduction to
the security of the encryption scheme. We only require CPA security in this case. We
now show that given an adversary that can distinguish Game M and Game 1, we can
build a simulator that breaks the CPA security of the encryption scheme. The simulator
obtains the public key of the CCAEnc scheme from an encryption challenger C. The
simulator sets up the parameters of our reputation system, such that the CCAEnc used
in our reputation system agrees with those received from C. The simulator picks all other
parameters directly (under a simulated crs), and proceeds with the signer anonymity
game as prescribed, except for the Ch SignerAnon query. In the Ch SignerAnon query,
the simulator decrypts the IKEnc ciphertext in the submitted votes, and obtains two
sets of unblinded votes: ~U0 = (U0,1, . . . , U0,c) and ~U1 = (U1,1, . . . , U1,c). The simula-
tor submits the two sets of unblinded votes to the encryption challenger, and obtains
Eb = CCAEnc.Enc(~Ub). The simulator builds Eb and rep1 into the challenge signature
of reputation Σ∗, and uses the simulation secret to simulate the NIZK proofs. If the
adversary can distinguish whether it is in Game M or Game 1, then the simulator would
succeed in distinguishing which set of unblinded votes C encrypted. Notice that in the
above, we modified the standard IND-CPA security game such that the simulator submits
two sets of plaintexts (as opposed to two plaintexts) to the challenger C. This can be
derived from the standard IND-CPA security through a simple hybrid argument.

Game 0 and Game M are indistinguishable. By reduction to the reputation anonymity
of the unblinded scheme.

The simulator obtains all users’ (rcvkey, votekey) from C, the challenger of the un-
blinded scheme. The simulator builds these into the user credentials of the full reputa-
tion system. The simulator picks all other parameters needed directly (under a simulated
crs), and proceeds to interact with the adversary prescribed, except in the Ch SignerAnon
query.

When answering the Ch SignerAnon query, the simulator first checks if all the votes
correspond to the same receiver specified by the adversary. This can be done through the
OpenNym algorithm defined in Appendix E.4, as the simulator knows all users’ secret
credentials. The simulator now decrypts the IKEnc ciphertext in the votes to obtain two
sets of unblinded votes, ~U0 = (U0,1, . . . , U0,c) and ~U1 = (U1,1, . . . , U1,c).

Had we used a real crs, these unblinded votes must be traceable to a registered voter
and recipient (except with negligible probability), due to the traceability of votes and
the perfect soundness of NIZK proofs. Under a simulated crs, the unblinded votes must
be traceable to a registered voter and recipient as well, since otherwise, we may build
a simulator that distinguishes a simulated crs and a real crs. As the simulator knows
all users’ rcvkey and votekey, the simulator can identify the voters from these unblinded
votes through a brute force enumeration method:

If U = VoteUnblinded(rcvkeyi, votekeyj), then U is an unblinded vote from j to i

As a result, the simulator obtains two sets of voters ~j0 = (j0,1, . . . , j0,c), and ~j1 =
(j1,1, . . . , j1,c). The simulator now submits the two lists of voters to C, and in return,

obtains repb = ShowRep(~Ub). It builds E0 and repb into the challenge signature of
reputation Σ∗, and uses the simulation secret simkey to simulate the NIZK proofs. Clearly,
if b = 0, then the above game is identical to Game 0; otherwise, it is identical to Game
M.
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E.6 Voter Anonymity

In the voter anonymity game, the adversary submits two voters j∗0 and j∗1 and a nym∗

in the challenge stage, and obtains a vote from one of these voters j∗b on the specified
nym∗. nym∗ must open to an uncorrupted user i∗. There are two places in the simulation
that can leak information about the challenger’s coin b. The first place is obviously the
challenge vote. The second place is more obscure: if the adversary submits the challenge
vote vt∗ (or some correlated version of it) in a SignRep query, it learns a signature of
reputation that encodes information about j∗b . We start by proving that the adversary is
not able to learn anything from the SignRep queries. To this end, we define the following
hybrid game:

Game I. We modify the original voter anonymity game in the following way. Whenever
the adversary makes a SignRep query, the challenger decrypts the IKEnc ciphertext in
the votes and obtains a list of unblinded votes. Let c denote the number of distinct
unblinded votes. The challenger now picks a random recipient, and random c voters. It
computes a signature of reputation corresponding to the above recipient and voters. We
henceforth refer to a signature of reputation constructed in this way as a random signature
of reputation. Notice that in Game I, the SignRep queries contain no information about
which voter was chosen in the Ch VoterAnon query.

Lemma E.7. Answering SignRep queries with random signatures of reputation does not
affect the adversary’s advantage in the voter anonymity game by more than a negligible
amount.

Proof. By reduction to signer anonymity. Let q denote the total number of SignRep
queries where vt∗ is involved. Consider the following hybrid sequence. In the d-th game
(0 ≤ d ≤ q), the challenger truthfully answers the first k SignRep queries where vt∗ is
involved. For the remaining SignRep queries, the simulator returns random signatures of
reputation. Due to the hybrid argument, it suffices to show that the (d− 1)-th and d-th
games are computationally indistinguishable, where 1 ≤ d ≤ q.

Setup: The simulator obtains params and all users’ credentials from the signer anonymity
challenger C.

Corrupt, Nym, Vote: Compute a result to these queries normally.

Ch VoteAnon: Flip a random coin b and compute a vote from j∗b normally.

SignRep: For the first d − 1 SignRep queries, answer faithfully. For the d-th query, let
S = (vt1, . . . , vtk) denote the list of votes specified by the adversary. The simulator
first checks if all votes submitted correspond to the same recipient specified by the
adversary by calling the OpenNym procedure defined in Section E.4.

As the simulator knows all users credentials, it can decrypt the IKEnc ciphertext in
the votes and obtain a list of unblinded votes. Let c denote the number of distinct
unblinded votes.

Now the simulator picks a random recipient i′ and c distinct voters j′1, . . . , j
′
c. It

constructs c votes from j′1, . . . , j
′
c to i′ respectively. Denote this set of votes as S′.

The simulator now submits the message msg, and two sets of votes S and S′ to
the signer anonymity challenger C. In return, the simulator obtains a signature of
reputation Σ, which the simulator passes along in response to the adversary’s query.
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Notice that if C returned a Σ corresponding to S, then the above simulation is identical
to Game d. Otherwise, it is identical to Game d−1. Therefore, the adversary’s advantage
should differ only by a negligible amount in these two adjacent games.

Remark 3. In the above, the challenger computes a random signature of reputation by
selecting c random voters j1, . . . , jc and a random recipient i, computing c votes from these
voters to i, and then directly calling the SignRep algorithm to construct the signature of
reputation.

Under a simulated crs, the challenger can use the following alternative strategy: It
computes c unblinded votes U1, . . . , Uc from j1, . . . , jc to i respectively. Then, it calls
CCAEnc.Enc to encrypt these unblinded votes, and calls ShowRep(U1, . . . , Uc) to con-
struct rep. Finally, the challenger uses simkey to simulate the NIZK, and calls the one-
time signature scheme to sign everything.

Under a simulated crs, the signature of reputation computed in the above two ways
are identically distributed.

Game II. Notice that in Game I, the challenger decrypts the IKEnc ciphertext in the
votes to uncover the unblinded votes. In Game II, the challenger picks the parameters
of the system such that it knows the decryption key to the CCAEnc scheme. Instead
of decrypting the IKEnc ciphertext, the challenger decrypts the CCAEnc ciphertext
instead, and counts the number distinct voters c. Then it returns to the adversary a
random signature of reputation consisting of exactly c votes.

Game II is identically distributed as Game I under a real crs, due to the perfect
soundness of the NIZK proofs and the traceability of the votes.

Later, under the simulated crs, the simulator sticks to decrypting the CCAEnc ci-
phertext for opening the votes.

We now show that the challenge vote vt∗ does not reveal sufficient information for the
adversary to distinguish whether vt∗ comes from j∗0 or j∗1 . To demonstrate this, we will
perform simulations under a simulated crs.

GameSim. The challenger now plays the above-defined Game II with the adversary under
a simulated crs. This does not affect the adversary’s advantage by more than a negligible
amount.

We now show that the adversary’s advantage in GameSim is negligible. There are
two ciphertexts in the challenge vote vt∗, the IKEnc ciphertext C1, and the CCAEnc
ciphertext C2. These two ciphertexts are the only places that may leak information about
which voter is chosen for the challenge query.

We define the following hybrid sequence.

Game 0 : The challenger chooses j∗0 for the challenge query.

Game M : When answering the challenge query, the challenger uses votekeyj∗1 to compute
C1 (through a homomorphic transformation as prescribed by the Vote algorithm).
However, it calls CCAEnc.Enc to encrypt xj∗0 , and produces C2. The challenger
now uses the simulation secret simkey to simulate the NIZK. Eventually, the chal-
lenger uses the one-time signature scheme to sign everything and returns the result
to the adversary.

Game 1 : The challenger chooses j∗1 for the challenge query.

Game M is indistinguishable from Game 1. By reduction to the security of the selective-
tag CCA encryption scheme.
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Setup: Simulator learns the public key of the CCAEnc scheme from a challenger C of
the encryption scheme. The simulator selects skots

∗, vkots
∗, computes the selected

tag tag∗ = H(vkots
∗), and commits tag∗ to the challenger C. The simulator sets up

all other parameters as normal, and registers n users.

Corrupt, Nym, Vote: As the simulator knows all users’ secret credentials, it can compute
answers to these queries normally.

Ch VoterAnon: The simulator obtains two voters j∗0 , j∗1 and a nym from the adversary.
The simulator forward xj∗0 and xj∗1 to the encryption challenger C, and gets back
C∗ = CCAEnc.Enc(pkcca, xj∗b , tag

∗). It builds the ciphertext C∗ into the challenge
vote. Now the simulator uses votekeyj∗1 to compute the IKEnc ciphertext C1, and
uses simkey to simulate the NIZK proofs. Finally, it calls the one-time signature
scheme to sign everything, and returns the resulting vote to the adversary.

SignRep: The query includes a list of votes. Check if all votes correspond to the same
recipient specified by the adversary by calling the OpenNym procedure as defined
in Appendix E.4.

Now the simulator needs to count the number of distinct voters. If the vote is the
same as the challenge vote, consider that vote to be from either of the challenge
voters. This will not affect the total count of distinct voters, due to the requirements
of the voter anonymity game.

If the vote is not equal to the challenge vote, the simulator calls the decryption oracle
of the CCAEnc scheme. The tag (under which the decryption oracle is called) must
be different from the selected tag tag∗. We show this below in Lemma E.8.

The decryption oracle returns a set of xj values that identify the set of voters. The
simulator counts the number of distinct voters c, and constructs a random signature
of reputation consisting of c distinct voters.

Clearly, if C returned CCAEnc.Enc(pkcca, xj∗0 , tag
∗), the above simulation is identi-

cally distributed as Game M. Otherwise, it is identically distributed as Game 1.

Lemma E.8. In the above simulation, whenever the simulator queries the decryption
oracle of the CCAEnc, the tag of the encryption differs from tag∗ except with negligible
probability.

Proof. Due to the security of the one-time signature scheme, the vote (which is not equal
to vt∗) must be signed under a key skots

′ = skots
∗. Let vkots

′ denote the corresponding
verification key. Then the tag used in the CCAEnc scheme tag′ = H(vkots

′) must be
different from tag∗ due to the collision resistance of the hash function. A more detailed
proof of this can be found in Groth’s group signature paper [Gro07].

Game 0 is indistinguishable from Game M. We now show that if there exists an adversary
that can distinguish Game 0 from Game M, we can build a simulator that breaks either
the IND-CPA of the IKEnc scheme, or the vote anonymity of the unblinded scheme.

Recall that in the security definition of voter anonymity, the adversary can win the
voter anonymity game in two cases depending on whether the recipient is corrupted or
not.

Below, we build a simulator which guesses ahead of the game whether the challenge
query will correspond to an uncorrupted recipient or a corrupted recipient. Depending
on the guess, the simulator will use different strategies for the simulation. If later the
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simulator’s guess turns out to be wrong, the simulator simply aborts. The simulator has
probability at least a half of guessing right.

We now describe the simulator’s strategy for each of the two cases.

Case 1 : Uncorrupted recipient.

We build a reduction to the IND-CPA security of the IKEnc scheme. The simula-
tor guesses upfront which recipient will be submitted in the Ch VoterAnon query.
Denote this challenge recipient as i∗. The simulator will abort if the guess later
turns out to be wrong.

Setup: From an encryption challenger C, the simulator obtains the public pa-
rameters paramsike, and a user public key upkike

∗ which it tries to attack. The
simulator lets this upkike

∗ to be user i∗’s user public key. For all other users, the
simulator picks their upkike and uskike by directly calling the IKEnc.GenKey
algorithm.

The simulator chooses parameters of the CCAEnc scheme such that it knows
the decryption key. The simulator generates the remaining parameters directly.

Nym, Vote: The simulator can answer these queries directly.

Corrupt : If the adversary corrupts the i∗-th user, abort. Otherwise, return the
secret credential for the specified user to the adversary.

SignRep: The simulator first checks if all votes correspond to the same recipient
specified by the adversary, by using the OpenNym procedure defined in Sec-
tion E.4. Next, the simulator calls the decryption algorithm of the CCAEnc
scheme, to decrypt the CCAEnc ciphertext in the submitted votes. The sim-
ulator counts the number of distinct unblinded votes, and builds a random
signature of reputation consisting of the same number of voters.

Ch VoterAnon: The simulator gets two voters j∗0 and j∗1 , and a nym. If the nym
does not open to i∗, abort. (OpenNym is implemented using the procedure
described in Section E.4). The simulator now computes the unblinded votes
Uj∗0 ,i and Uj∗1 ,i and submits them to the encryption challenger C. The simulator
gets back a ciphertext IKEnc.Enc(paramsike, upkike

∗, Uj∗b ,i), this will be the C1

ciphertext in the resulting vote. The simulator now computes the CCAEnc
ciphertext directly on xj∗0 , and simulates the NIZK proofs. Eventually, the
simulator calls the one-time signature scheme to sign everything, and returns
the resulting vote to the adversary.

It is not hard to see that if C encrypted Uj∗0 ,i, then the above game would be
identically distributed as Game 0. Otherwise, it is identically distributed as Game
1.

Case 2 : Corrupted recipient.

By reduction to voter anonymity of the unblinded scheme.

Setup. The simulator obtains all users’ rcvkey and vpk from the vote anonymity
challenger C of the unblinded scheme. The simulator now guesses the challenge
voters j∗0 and j∗1 that the adversary will specify in the Ch VoterAnon query, as
well as the challenge recipient i∗. If the simulator’s guesses later turn out to
be wrong, the simulation simply aborts. Now, through Corrupt queries to C,
the simulator corrupts all users’ vsk except for j∗0 and j∗1 . The simulator makes
VoteUnblinded queries to C, and obtains an unblinded vote from j∗0 and j∗1 to
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all users except i∗. The simulator picks the parameters of the CCAEnc such
that it knows its secret decryption key. The remaining system parameters are
picked directly.

Corrupt. If the adversary queries j∗0 or j∗1 , abort the simulation. Otherwise, return
the specified user’s credential to the adversary.

Nym. Compute directly.

Vote. The adversary submits a voter j and a nym which opens to i. The simulator
can decide i by calling the alternative OpenNym algorithm (see Section E.4).
If j ∈ {j∗0 , j∗1} and i = i∗, abort the simulation. Otherwise, the simulator
has queried C, and obtained an unblinded vote U from j to i. The simulator
computes an IKEnc encryption of the unblinded vote U , by directly encrypting
it. The simulator computes the CCAEnc ciphertext on xj directly. The
simulator uses simkey to simulate the NIZK proofs.

Ch VoterAnon. The simulator calls the alternative OpenNym algorithm (see Sec-
tion E.4) to decide the recipient i. The simulator now forwards the two spec-
ified voters j∗0 and j∗1 and the recipient i to C, to obtain an unblinded vote
U∗b corresponding to one of the voters j∗b . The simulator now encrypts the U∗b
by directly calling the IKEnc.Enc algorithm. The simulator computes the
CCAEnc ciphertext on xj∗0 directly, and uses simkey to simulate the NIZK.

SignRep. The simulator calls the alternative OpenNym algorithm (see Section E.4)
to check that all specified votes open to the specified recipient i. Now the
simulator calls the decryption algorithm of the CCAEnc and obtains a set of
voters. The simulator counts the number of distinct voters c, and computes a
random signature of reputation with c voters. As we mentioned in Remark 3,
the simulator only needs to know c unblinded votes for a random recipient i,
to compute a random signature of reputation containing c voters.

E.7 Receiver Anonymity

By reduction to the IK-CPA security of the IKEnc scheme.
We perform the simulation under a simulated crs. This does not affect the adversary’s

advantage by more than a negligible amount.

Setup. The simulator guesses which two users i∗0 and i∗1 the adversary will submit in
the Ch RecvAnon query. The simulator obtains two user public keys upkike

∗
,0 and

upkike
∗
,1 from the IK-CPA challenger C. It lets i∗0’s user public key to be upkike

∗
,0, and

i∗1’s user public key to be upkike
∗
,1. The simulator calls IKEnc.GenKey to generate

the (upkike, uskike) pairs for all other users. As a result, the simulator knows all
users’ uskike except for i∗0 and i∗1.

The simulator picks the parameters of the CCAEnc.Enc encryption scheme, such
that it knows the secret decryption key. The simulator picks the remaining system
parameters directly.

Corrupt. If the query is on i∗0 or i∗1, abort. Otherwise, return the user’s credential to the
adversary.

Nym, Vote. Compute directly.

SignRep. In case any of the nyms specified is equal the challenge nym, abort.
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Otherwise, the simulator calls the OpenNym procedure defined in Section E.4 to
determine the recipient and check that all of the nyms correspond to the same
recipient i as specified by the adversary.

The simulator decrypts the CCAEnc ciphertext in each vote and obtains a set of
voters j1, . . . , jc. With knowledge of all users votekey and rcvkey, the simulator can
compute the unblinded votes from j1, . . . , jc to i. Now it computes the CCAEnc
ciphertext and the rep parts of the signature based on the unblinded votes. The
simulator uses the simkey to simulate the NIZK proofs.

Ch RecvAnon. The adversary specifies two users, i∗0 and i∗1. If i∗0 and i∗1 disagree with the
simulator’s guesses, abort. The simulator specifies (rcvkeyi∗0 , 1, 1) and (rcvkeyi∗1 , 1, 1)
to C and obtains a challenge ciphertext
C = IKEnc.Enc(paramsike, upkike,i∗b , (rcvkeyi∗b , 1, 1)). Recall that the two encryp-
tions of 1 are needed to rerandomize the ciphertext later when a voter performs
homomorphic transformation on the ciphertext. (Due to the hybrid argument, the
IK-CPA game may be modified such that the encryption adversary submits longer
messages consisting of multiple elements in G in the challenge phase.) The simula-
tor builds the challenge ciphertext C into the nym, and simulates the NIZK proofs.
Finally, it calls the one-time signature scheme to sign everything, and returns the
resulting nym to the adversary.

Guess. The adversary outputs a guess b′. The simulator outputs the same guess.

It is not hard to see that if the adversary succeeds in guess b′ with more than negligible
advantage, the simulator would have more than negligible advantage in the IK-CPA game.

E.8 Reputation Soundness

The adversary plays the reputation soundness game, and outputs a forged signature of
reputation Σ∗ at the end of the game. Suppose Σ∗ signs the message msg∗ and the
reputation count c∗.

If the adversary wins the game, it is a requirement that the adversary has made a
SignRep query on the message msg∗ and reputation count c∗. Therefore, Σ∗ cannot be
equal to any signature of reputation returned by a SignRep query. Due to the traceability
and non-frameability of signature of reputation, Σ∗ must open to a signer i∗ within the
adversary’s coalition, that is, a signer that has been corrupted through a Corrupt query.

Now apply OpenSigRep to open Σ∗ to a set of c∗ distinct voters. This fails with
negligible probability due to the traceability of the signature of reputation. As c∗ > `1+`2,
there must exist an uncorrupted voter j who voted for i∗, and the adversary has not made
a Vote query from j to any nym that opens to i∗. But this breaks the unforgeability of
signature of reputation.

F Security Proofs for the Space Efficient Scheme

Theorem F.1. The algorithms Setup, GenCred, GenNym, Vote, SignRep′, and
VerifyRep′ constitute an ε-sound scheme for signatures of reputation.

Proof. We prove this in the random oracle model through a reduction from the soundness
of the regular scheme, which is proven in Appendix E. Assume we have some adversary
A trying to break the ε-soundness game. A will only be able to compute hash values by
querying the random oracle H. As A runs, H records the queries A makes in a table and
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returns responses selected uniformly at random (except for repeated queries, in which
case the previous value is returned).

Eventually A outputs a message msg and a forged signature of reputation Σ. Let
c = VerifyRep′(params,msg,Σ). Assume that c 6= ⊥, (1− ε)c > `1 + `2, and the hashes
and challenge set computation in Σ verify correctly. We will bound the probability that
the all the votes in the challenge set verify.

The challenger looks through the hash values included and is able to find all their
preimages based on the queries recorded by H. From these the challenger reconstructs
the full hash tree and all c original leaf values ω1, . . . , ωc. For each 1 ≤ i ≤ c, the
challenger verifies θi and ζi and checks that Rρi < Rρi+1 . Let c′ ≤ c be the number of
these votes which pass both checks.

We distinguish two cases:

1. c′ ≥ (1− ε)c
2. c′ < (1− ε)c

Case 1 must occur with probability less than or equal to some negligible function ν(λ),
otherwise the challenger could output the c′ > `1 + `2 valid votes and then it would be
an adversary which would break the regular reputation soundness property.

We now bound the probability of all the challenge votes verifying in Case 2. Since
the challenge indices were selected by evaluating H on unique inputs, I is a uniformly
random set of ` votes. So the probability that these are all among the c′ valid votes is

c′

c
· c
′ − 1

c− 1
· c
′ − 2

c− 2
· · · c

′ − (`− 1)

c− (`− 1)
=

`−1∏
i=0

c′ − i
c− i

.

Since c′ < (1− ε)c, this probability strictly less than

`−1∏
i=0

(1− ε)c− i
c− i

.

We now show that the above value is at most e−λ.
Since ` was selected as dλε e, we may reason as follows.

` =
⌈λ
ε

⌉
≥
⌈ λ

− log(1− ε)

⌉
(using the identity log(1 + x) ≤ x for x > −1)

=⇒ ` ≥ λ

− log(1− ε)

=⇒ −λ ≥ ` log(1− ε) =

`−1∑
i=0

log(1− ε) =

`−1∑
i=0

log
(1− ε)c

c

≥
`−1∑
i=0

log
(1− ε)c− i

c− i
= log

`−1∏
i=0

(1− ε)c− i
c− i

=⇒ log

`−1∏
i=0

(1− ε)c− i
c− i

≤ log e−λ

=⇒
`−1∏
i=0

(1− ε)c− i
c− i

≤ e−λ
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So the probability of all the challenge votes verifying and Case 2 occurring is strictly less
than e−λ.

So overall, the probability of all the challenge votes verifying is less than e−λ + ν(λ),
and thus the probability that Σ verifies is less than e−λ + ν(λ). Since ν(λ) is negligible
in λ, e−λ + ν(λ) is also negligible in λ.
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