
1536-1268/03/$17.00 © 2003 IEEE ■ Published by the IEEE CS and IEEE ComSoc PERVASIVEcomputing 47

T H E H U M A N E X P E R I E N C E

The Smart Classroom:
Merging Technologies for
Seamless Tele-Education

T
ele-education systems promise wider
access to education and support for
lifelong learning. These systems are
either asynchronized or synchronized.
Asynchronized systems are relatively

simple. An organization can use the Internet to pub-
lish hyperlinked multimedia content and reach a
wide audience. Yet, most current courseware is sim-
ply textbook material transferred to HTML; instead
of reading the book, students read the screen. In most
cases, live instruction catches students’ attention and

interest much more effectively
than static materials. Real-time
interactive virtual classrooms
therefore play an indispensable
role in distance learning. In this
type of tele-education, multimedia
communication systems let teach-

ers and students in different locations participate in
the class synchronously. Most systems are desktop-
based, however, so the teacher must remain at the
computer, using the keyboard and mouse to operate
the class—an awkward experience for a teacher.

By applying smart space technologies in a real
classroom, the Smart Classroom project bridges the
gap between tele-education and traditional class-
room activities in terms of the teacher’s experience
and seamlessly integrates these two currently sepa-
rate educational practices. (See the sidebar for a dis-
cussion of other projects seeking to merge pervasive
computing technologies and education.) More specif-
ically, we extend the user interface of a legacy desk-

top-based tele-education system—SameView1,2—
into the 3D space of an augmented classroom. In
the Smart Classroom, teachers can use multiple nat-
ural modalities while interacting with remote stu-
dents to achieve the same effect as a teacher in a
classroom with local students.

Figure 1 gives an overview of the Smart Classroom.
The system turns a physical classroom into a natural
user interface for tele-education software. Teachers
in the Smart Classroom can move freely, using con-
ventional teaching methods to instruct remote stu-
dents. Because they are in a real classroom environ-
ment, they can accommodate local students at the same
time. Simultaneously instructing local and remote stu-
dents also requires a smaller workforce than separate
on-campus and tele-education operations. Further-
more, the lecture, recorded as hypermedia course-
ware, is available for playback after class.

Classroom setup
Our prototype system is in a 3.2 × 7.6-meter room

divided by a curtain. The class takes place in the
main part of the room. The other section is filled
with computers required by the system, purpose-
fully hidden from view to exemplify the “invisible
computer” notion.

The classroom has two wall-size projector
screens, one on the front wall and the other on a
side wall (see Figure 2). The MediaBoard is a touch-
sensitive SmartBoard screen for displaying teaching
materials. Remote students can view the board’s
content via a client program (assuming remote stu-

The Smart Classroom integrates voice-recognition, computer-vision, and
other technologies to provide a tele-education experience similar to a
real classroom experience.

Yuanchun Shi, Weikai Xie,
Guangyou Xu, Runting Shi, Enyi
Chen, Yanhua Mao, and Fang Liu
Tsinghua University

dents access the classroom via their com-
puters). The StudentBoard displays remote
students’ images and a computer-animated
virtual assistant. When a remote student
takes the floor, live video and audio of the
student is projected here too. The teacher

and local students view and interact with
remote students through the StudentBoard.

The classroom is equipped with several
cameras. Some capture the teacher’s
actions, which are recognized and trans-
lated into an interaction command to the

underlying tele-education software. Other
cameras capture live video of the class-
room, which the system broadcasts to
remote students. The teacher also wears a
wireless microphone to capture his or her
speech.

Numerous software modules provide
classroom functionality. For example,
SameView provides the interaction chan-
nels between local and remote students, and
various perception modules let the teacher
interact with remote students as though
they were local. The system’s software
infrastructure coordinates the distributed
modules.

Component technologies
The system involves a number of com-

ponent technologies that make the inter-
action between the teacher and remote stu-
dents as smooth as that in a physical
classroom. With the exception of IBM
China Research Lab’s speech recognition,
our lab developed all these component
technologies. Due to space limitations, we
only describe how the technologies func-
tion in the Smart Classroom project. We
direct interested readers to the works cited
for descriptions of the technologies’ inter-
nal algorithms.

Remote student telepresence
When merging tele-education with real

classroom instruction, the teacher and
local students must be made aware of the
remote students. In the Smart Classroom,
when remote students log on using the
provided client program, the client pro-
gram uses cameras on the students’ com-

48 PERVASIVEcomputing http://computer.org/pervasive

T H E H U M A N E X P E R I E N C E

Camera

Lecture recording

Smart classroom

Display

Internet

Figure 1. The Smart Classroom system.
Integrated modules let teachers interact
with remote students as though they
were in the physical classroom.

Figure 2. A snapshot of the prototype
Smart Classroom. Teaching materials are
displayed on the MediaBoard at the front
of the class, while remote student images
are displayed on the StudentBoard,
located on a side wall.

Remote students

StudentBoard

MediaBoard

Virtual assistant

puters to capture their images and transfer
them to the classroom’s StudentBoard. Pre-
senting live video of all the remote students
would certainly add color to the class, but
doing so would place too much of a burden
on the network and CPU. Thus, the Stu-
dentBoard only displays the live video of
remote students who are explicitly given
the floor.

We allocate the same fixed amount of
space for each remote student image and
place them side-by-side. This approach,
however, is not scalable when there are
more remote students than fit in the Stu-
dentBoard’s display space. Our current
solution is to limit the number of students
that can request the floor and display their
images only. To better address the prob-
lem, we are seeking more sophisticated
visualization methods. One plan is to ren-
der each image as if the remote students
were seated in a large hall—the students’
image size decreases as their virtual dis-
tance from the teacher increases.

Pen-based user interface
Teachers in real classrooms often write

on chalkboards or whiteboards. Most cur-
rent tele-education practices, however, con-
fine teachers to their computers by requir-

ing them to use the mouse and keyboard.
We address this problem by adopting the
wall-size touch-sensitive SmartBoard
device as the display screen for Media-
Board. A SmartBoard accommodates most
mouse functions. To move to a new page,
for example, the teacher need only touch
an icon on the display. Teachers can use
digital pens and erasers to write or remove
notes and to diagram on the SmartBoard
directly (see Figure 2).

With the help of the underlying real-time
multimedia communication software,
remote students see the same lecture mate-
rials or notes on the SmartBoard as local
students do. Figure 3 shows the client pro-
gram for remote students. A remote stu-
dent who has the floor can also write on
this board freely—for instance, a student
might write the solution to a question the
teacher has just posed.

Laser pointers as interaction tools
In most current desktop-based tele-edu-

cation systems, teachers use a mouse or key-
board to relay classroom arbitration deci-
sions to the computer. In the Smart
Classroom, a computer-vision-based mod-
ule called Laser2Cursor lets teachers accom-
plish this task more intuitively: the teacher

aims the laser pointer at a remote student’s
image (highlighted to indicate that it is the
current selection), and by clicking on the
selected image—fixing the laser spot on the
point of interest for a second and then cir-
cling that point—the teacher gives the floor
to a remote student or revokes it at will.

The module also works for the Media-
Board, where the laser pointer serves as a
remote mouse. Using this module, a teacher
need not approach the MediaBoard to run
a slide presentation. Moreover, when the
teacher points the laser pointer at the Media-
Board to highlight a point in the lecture, a
red spot is visible at the same position on
the remote students’ view.

Laser2Cursor embodies a number of
ideas not seen in previous work on laser
pointer tracking.3,4 First, we have devel-
oped a training process to improve the
system’s adaptability. By learning the
background of the image captured by the
cameras and parameters such as color seg-
mentation and motion detection thresh-
olds, our system automatically adapts to
new environments. Second, to improve
the system’s robustness, we integrate mul-
tiple cues such as color, motion, and shape
in the laser spot detection. Because most
people’s hands are unsteady, when a per-

APRIL–JUNE 2003 PERVASIVEcomputing 49

Figure 3. Remote students’ client interface. Students can watch live video of the teacher, view lecture notes on the MediaBoard, or
chat with the teacher or other students.

MediaBoard with
lecture notes

Student roster

Video of
teacher

son aims a laser pointer, the spot’s exact
position usually jitters. We use this char-
acteristic as an additional cue to detect
the spot. Next, a Kalman filter smoothes
the spot’s trajectory, which tends to be
irregular and rough. Finally, the module
uses a finite state machine to track the
spot’s behavior—that is, whether it is
moving or clicking.

To test the module’s usability, we asked
several students in our lab to select items on
the MediaBoard using a laser pointer. The
module yielded satisfactory performance,
with most testers agreeing that spot detec-

tion is precise and that moving the cursor
is almost as easy as it is with a mouse. Still,
some students complained that clicking
was relatively difficult. As a remedy, we
offer users an optional interaction modal-
ity: the voice command.

Speech-capable virtual assistant
In the Smart Classroom, a speech-recog-

nition module lets the teacher perform
some common tasks using voice com-
mands. For example, the teacher might say,
“jump to the previous page,” or “go
ahead” to give the floor to a remote stu-

dent whose image is highlighted with the
laser pointer, as Figure 4 shows. To obtain
reliable recognition, we limit the number of
valid voice commands. Moreover, because
the system’s recognition engine is set to
work in voice-command-oriented mode, it
seldom mistakes the teacher’s continuous
speech for voice commands.

The Smart Classroom also uses a text-
to-speech module5 to notify the teacher
when certain events occur. For example,
when remote student Tom asks for the
floor by clicking a menu item on the client
program, the system advises the teacher,
“Tom is asking for the floor.”

Because teachers might feel strange
interacting with a lifeless classroom, we
adopted a virtual assistant to represent
the Smart Classroom. On the Student-
Board, a computer-animated human
image (see Figures 2 and 5) with facial
expressions and lip movements synchro-
nized with the text-to-speech module’s
synthesized voice represents the virtual
assistant.6 Thus, the system provides a
natural metaphor and the teacher inter-
acts with an assistant that understands
voice commands and produces proper
vocal notification and feedback.

Biometrics-based login
The Smart Classroom must identify a

lecturer before authorizing use of the class-
room facilities. By combining face-recog-
nition and speaker-verification technolo-
gies,7,8 the Smart Classroom can identify
a teacher automatically and provide an
undeterred login experience.

On entering the Smart Classroom, the
teacher stands in front of a camera and
says his or her name (or any other words

50 PERVASIVEcomputing http://computer.org/pervasive

T H E H U M A N E X P E R I E N C E

Figure 4. A teacher highlights a remote
student’s image using a laser pointer and
issues the voice command, “Go ahead,”
to give the student the floor.

Go ahead

Figure 5. A teacher logs on to the Smart
Classroom using a biometrics-based
module combining face-recognition and
speaker-verification technologies.

Your name,
please.

A camera for
face recognition is installed

behind the mirror

I’m Weikai

Virtual assistant

the teacher has chosen). If both the face-
recognition and speaker-verification mod-
ules respond positively, the virtual assis-
tant replies with a greeting that places the
Smart Classroom at the teacher’s disposal,
as Figure 5 illustrates. The system uses the
teacher’s identification information to
load the proper voice model into the
speech-recognition module, if the teacher
has trained the model in advance. This
improves voice-recognition accuracy dur-
ing the lecture.

Smart Cameraman
In a conventional classroom, students

naturally follow the class’s focus as it
changes from time to time. For instance,
when a teacher writes a formula on the
blackboard, the formula becomes the cen-
ter of attention; when a teacher holds up
a model, the model becomes the object of
general interest. Yet in most current real-
time teaching systems, remote students
only see a fixed scene regardless of the
changing context of the class, which ham-
pers their understanding of the instruction.
Although a human camera operator can
select the proper view for live video, the
high labor cost often makes this infeasi-
ble. More importantly, teachers and stu-
dents generally agree that having such a
person in class would make them uneasy.

The Smart Cameraman overcomes this
problem. This component consists of an
array of cameras and a decision module.

By drawing clues from observed classroom
activities, the Smart Cameraman auto-
matically distinguishes among several
activities during a typical class. Using this
information, the decision module selects
the most appropriate view. We define sev-
eral context types for this module:

• Teacher writing on the MediaBoard.
Whenever the teacher is writing on the
MediaBoard, the module selects a close-
up view of the board, as Figure 6a
shows.

• Teacher showing a model. When the
teacher holds up a model, the camera
zooms in on it, as Figure 6b shows.

• Remote student speaking. When a
remote student is speaking, live video of
the student will be delivered to other
remote students. Meanwhile, it will be
displayed on the StudentBoard.

• Other. In all other situations, the mod-
ule selects the classroom overview, as
Figure 6c shows.

By tracing the SmartBoard’s mouse
events, the Smart Cameraman knows

when the teacher is writing on the Media-
Board; by monitoring floor control events,
it can tell when a remote student is speaking.
Meanwhile, a separate computer-vision-
based hand-gesture-recognition module
decides whether the teacher is holding up
a model.9 For reliable recognition, we cur-

rently restrict the teacher to a predefined
area when displaying models. We model
the class context using a finite-state
machine whose state transitions are trig-
gered by recognized cues. To filter possible
transient misrecognition, each state has an
associated minimum steady time.

Software infrastructure
In systems such as the Smart Classroom,

in which various modules must be con-
nected and coordinated, the software infra-
structure plays a key role. The infrastruc-
ture provides the runtime environment and
common services for the modules as well as
a development interface for building mod-
ules that can be seamlessly integrated into
the system. The Smart Platform10 (see our
Web site, http://media.cs.tsinghua.edu.cn/

APRIL–JUNE 2003 PERVASIVEcomputing 51

Figure 6. Different scenes delivered to remote students according to the class context: (a) teacher writing on MediaBoard;
(b) teacher showing a model; (c) teacher having a discussion with local students.

(a) (b) (c)

In systems such as the Smart Classroom,

in which various modules must be connected

and coordinated, the software infrastructure

plays a key role.

~pervasive, for runtime code and the soft-
ware developer’s kit) is not limited to the
Smart Classroom but addresses common
areas of concern for any smart space pro-
ject, including these issues:

• The components in a smart space might
not have been designed to cooperate with

each other. To assemble them with least
effort, we need a high-level abstraction
model and coordination mechanism.

• Many perceptual interface modules are
prone to runtime errors or exceptions,
making it necessary to occasionally
restart them, especially during joint
debugging. A loosely coupled system is

therefore essential not only to ensure
runtime error resilience but also to facil-
itate system development.

• Many modules must exchange real-
time data at a constant rate—that is,
they exhibit characteristics of stream-
oriented communications. For instance,
the Laser2Cursor module sends the

52 PERVASIVEcomputing http://computer.org/pervasive

T H E H U M A N E X P E R I E N C E

M any research projects have sought to augment traditional

education with pervasive computing technologies. They

cover different aspects of educational activities.

As many students might agree, it is difficult to keep up with

both their notes and the lecture. DePauw University’s Debbie pro-

ject (http://acad.depauw.edu/~dberque/debbie/index.htm) tack-

les this problem by providing teachers and students with pen-

based tablet PCs and associated software. As the teacher displays

digitalized lecture materials or writes notes on his or her tablet, the

system distributes a synchronized view to the students’ devices,

and students can save it with their notes. Laurent Denoue and

Patrick Chiu at Fuji-Xerox Palo Alto Laboratory (FXPAL)1 assume

students have handheld devices with relatively inconvenient

means of inputting text. In their system, a word or phrase entered

by one person can be quickly reused by others. With the

concerted efforts of all group members, note taking becomes

more efficient.

Other researchers attempt to capture the classroom experience,

where not only the note and slides, but also the live video and

audio and other class threads can be recorded in a synchronized

and structured manner. A student can use the recorded documents

to review the lecture after class, or to make up for a missed class.

GaTech’s Classroom 2000,2 McGill University’s Intelligent Class-

room,3 Cornell University’s Lecture Browser (www.cs.cornell.edu/

zeno/projects/lecture browser/Default.html), and the conference

room at FXPAL4 are different implementations of the same facility.

In these projects, the captured classes are stored in a Web-accessi-

ble format so they readily become courseware for tele-education.

Rather than have students passively view recorded documents,

David Bargeron and his colleagues at Microsoft Research propose

adding communication channels such as email so a student can

interact with the teacher when viewing the recorded class.5 As they

note, however, such interaction is asynchronous.

Other projects seek to automate routine classroom tasks. In

McGill’s Intelligent Classroom, the computer system does the

housekeeping chores, so lecturers need not worry about things

such as light or drape control or A/V device configuration. North-

western University’s Intelligent Classroom project focuses on auto-

mated lecture video production, in which the camera uses plan-

recognition technologies to track the lecture’s focus.6 AutoAudito-

rium (www.autoauditorium.com), a commercially available prod-

uct, shares a similar objective but is more suitable for business pre-

sentations.

Although our system has many similarities to these works, it dis-

tinguishes itself by allowing the teacher to simultaneously interact

with local and remote students in a similar fashion. Work at the

University of Toronto’s Knowledge Media Design Institute (http://

epresence.kmdi.utoronto.ca) is similar to ours in that remote stu-

dents can participate in a real classroom via the Internet. Our sys-

tem provides a rich variety of bidirectional interaction capabilities,

however, whereas in their work the interaction channel from

remote students to local teachers or students is limited to plain

text chatting. Furthermore, many tele-education projects have

used computer-supported cooperative work or videoconference

products such as Microsoft’s NetMeeting, which involve desktop-

based teaching—exactly what we try to overcome.

REFERENCES

1. L. Denoue, P. Chiu, and T. Fuse, “Shared Text Input for Note Taking on
Handheld Devices,” Proc. ACM Human Factors in Computing Systems
(CHI 2002), ACM Press, 2002, pp. 794–795.

2. G.D. Abowd, “Classroom 2000: An Experiment with the Instrumenta-
tion of a Living Educational Environment,” IBM Systems J., special issue
on pervasive computing, vol. 38, no. 4, 1999, pp. 508–530.

3. J.R. Cooperstock, “Classroom of the Future: Enhancing Education
through Augmented Reality,” Proc. Conf. Human-Computer Interaction
(HCI Int’l 2001), Lawrence Erlbaum Assoc., 2001, pp. 688–692.

4. P. Chiu et al., “Room with a Rear View: Meeting Capture in a Multime-
dia Conference Room,” IEEE Multimedia, vol. 7, no. 4, Oct.–Dec. 2000,
pp. 48–54.

5. D.M. Bargeron et al., Asynchronous Collaboration Around Multimedia and
Its Application to On-Demand Training, Microsoft Research tech. report
99-66, 1999.

6. D. Franklin, “Cooperating with People: The Intelligent Classroom,”
Proc. 15th Nat’l Conf. Artificial Intelligence (AAAI 98), AAAI Press, 1998,
pp. 555–560.

Pervasive Computing Technologies in Education

updated cursor position to the Media-
Board module 10 times per second. In
such cases, communication latency is
of serious concern.

• Developers of smart space component
technologies are not necessarily distrib-
uted computing experts and thus prefer
a simple system structure and develop-
ment interface to a sophisticated one.

Architecture and runtime structure
In the Smart Platform, each module is

modeled as an agent that has its own goal
and cooperates with others through an
interagent language. An agent encapsulates
not only the module’s state and behavior but
also the logic for activating its behavior, and
interagent communication occurs on a rel-
atively high level, usually the intention level.
These features are suitable for constructing
a system involving diversified component
technologies, such as the Smart Classroom.

Figure 7a shows the Smart Platform
architecture. Between the bottom operating
system/network layer and the upper appli-
cation layer are the communication and
coordination layers. The former enhances
the underlying network layer’s quality of
service; the latter lets agents collaborate in
a structured and coherent manner to achieve
the system’s overall goal. A vertical run-
time environment management mechanism
manages tasks such as agent registry, agent
lifecycle, and so on.

The Smart Platform’s runtime structure,
shown in Figure 7b, has two tiers. Each
computer in the system hosts a container
component, which provides a local runtime
environment for agents on the same host.
Globally, a directory service component is
responsible for agent registration, message
dispatch, and system management.

On startup, agents connect to their local
container on a predefined local socket,

while the container and the directory
service establish connection with a self-
discovery mechanism based on IP multicast.
More specifically, the directory service
always listens on a multicast address. The
container sends a “hello” message to this
address. On receiving the message, the
directory service responds with a “hello-
ack” message to the container, specifying

its IP address and port where the container
can establish a connection to it.

The two-tier structure has two signifi-
cant advantages: resilience to transient net-
work failures and zero system configura-
tion. When the network connection
recovers from a transient failure, only the
container must renegotiate the connection
with the directory service; the connections
between local agents and containers will
remain unaffected. The automatic directory
service–container negotiation mechanism
also frees developers and users from hav-
ing to configure system components to tell
them the locations of other components.

Interagent communication
The Smart Platform coordinates agent

communication via a message-group-based

publish-and-subscribe model. Each agent
can publish messages or subscribe to any
message group. If an agent designates an
unknown message group, the system cre-
ates the new group immediately. Therefore,
the agents need not start up in a rigid rel-
ative order. When an agent publishes a
message to a group, the system forwards
it to all subscribers by invoking a callback

function on the receiving side. This coor-
dination model enables a loosely coupled
system with these features:

• An agent need not have prior knowledge
of other agents’ names or locations. As
long as it is working with the correct
message group, the directory service will
handle all message routing.

• Agents communicate in an asynchro-
nous and nonblocking way, restricting
the spread of failures and facilitating sys-
tem recovery after an agent fails.

Two kinds of message groups are
available:

• Message-oriented, for communications
without tight temporal constraints

APRIL–JUNE 2003 PERVASIVEcomputing 53

C

D

Participating
computer

Participating
computer

Participating
computer

C

C

Communication layer

Coordination layer

Application layer

OS/network

Runtim
e environm

ent
m

anagem
ent

A

A

A

A

AA

A

A

Legend:
A Agent
C Container
D Directory
 service(b)(a)

Figure 7. The Smart Platform. (a) The
platform architecture consists of four
layers and a vertical runtime environment
management mechanism to manage
agents. (b) The two-tier runtime structure
protects against transient network failures
and requires no configuration.

In the Smart Platform, each module is modeled

as an agent that has its own goal

and cooperates with others through an

interagent language.

• Stream-oriented, to transmit data that
are sensitive to transmission delay and
delay variation

Messages in the message-oriented group
are transferred along the agent-container-
directory service-container-agent path,
with the directory service acting as message
dispatcher and replicator. For the stream-
oriented messaging service, the directory
service assigns an IP multicast address to
each streaming group, and the system trans-
fers the message to this address directly,
using the real-time transport protocol
(RTP). Such peer-to-peer communication
effectively reduces transmission delay. RTP
and the associated buffering scheme on the
receiver’s side lessen the variation in mes-
sage delivery latency. Furthermore, IP mul-
ticast ensures that subscribers in the same
group receive messages simultaneously.

The Smart Platform message format
conforms to the XML standard both on
the agent level and the wire protocol level.
XML’s extensibility means developers can
add more descriptive fields to their mes-
sages without disturbing agents that only
understand old versions of messages. The
XML-based wire protocol will help our
system interoperate with others in the
future.

Runtime environment management
and debugging support

Users or developers of a distributed sys-
tem often find it cumbersome to have to

walk from computer to computer to start
agents or check their running states. To
avoid this, the Smart Platform uses an
agent dependency-management mecha-
nism and a centralized system-monitoring
and debugging mechanism.

When registering with the directory ser-
vice, each agent should specify two argu-
ments: OfferedSvcs, a list of services the agent
offers; and ReliedSvcs, the services it relies on
for normal operation. Through these argu-
ments the directory service learns the inter-
agent dependencies. Furthermore, by
recording agents’ location history, the
directory service can automatically nego-
tiate with the correct container to launch
an agent whose service is demanded by a
running agent. Thus, a group of agents can
be loaded in one action.

The containers and directory service
have built-in system state collection and
control capabilities, which can be accessed
through a system-level agent called the
monitor. Figure 8 shows the monitor’s user
interface, which includes the host name
and IP address of the computers partici-
pating in the runtime environment, the
running agents and their status, and the
interagent dependency topology. System
developers can use monitor agents to
remotely launch or kill an agent, trace an
agent’s messages, or manually send a mes-
sage to a group or an individual agent.

Agent development interface
The Smart Platform agent development

interface is fairly simple and straightfor-
ward. In most cases, agents only need five
primitives: Register, Subscribe, OnMsgNotify, Pub-
lish, and Quit. The interface is provided as
an abstract class, available in both C++
and Java. We also implemented a custom
AppWizard for Visual C++, with which
developers can generate an agent’s skele-
ton code in a single step. In addition, we
provide a standard setup program that
automatically installs and configures
required components for new computers,
making deployment much easier.

We performed an informal usability
study of the Smart Platform by training
Smart Classroom project members to use
it. The seven participants differed in
research backgrounds and distributed
computing expertise. Our observations
showed that most of them grasped the
Smart Platform principles and could use its
SDK in less than an hour. Half of the
trainees deployed the Smart Platform on
their own computers and began developing
agents without further help.

In informal user evaluations with sev-
eral teachers from different depart-
ments at our university, our proto-
type system received positive

comments, especially for its rich and intu-
itive interactive channels for working with
remote students. In collaboration with
Tsinghua University’s Distance Learning
School, we plan large-scale testing of the
system in Fall 2003.

As portable computing devices prolifer-
ate, teachers will more likely take portable
computers or PDAs into the Smart Class-
room. Thus, our future work will seek to
configure the interfaces to support the
available devices and seamlessly add
mobile devices to the Smart Classroom.

54 PERVASIVEcomputing http://computer.org/pervasive

T H E H U M A N E X P E R I E N C E

Figure 8. Monitor agent user interface.
The system-level agent lets users
remotely launch or kill an agent, trace
agent messages, or send messages
manually.

Hierarchical
list of

containers
and agents

Traced
messages

Existing
message
groups
and their
subscribers

Graphical
illustration
of agent
dependency

List of
message

groups and
traced
agents

ACKNOWLEDGMENTS
The research presented here is supported by the
National Natural Science Foundation of China, 863
High-Tech Plan, the Ministry of Education, China,
and IBM China Research Lab.

REFERENCES
1. C.Y. Liao, Y.C. Shi, and G.Y. Xu,

“AMTM—an Adaptive Multimedia Trans-
port Model,” Proc. SPIE Int’l Internet Mul-
timedia Management Systems, Int’l Soc. for
Optical Eng. (SPIE), 2000, pp. 141–149.

2. Y.Z. Pei et al., “Totally Ordered Reliable
Multicast for Whiteboard Application,”
Proc. 4th Int’l Workshop on CSCW in
Design, Univ. de Technologie de Com-
piegne, Compiegne, France, 1999, pp.
253–256.

3. C. Kirstein and H. Muller, “Interaction with
a Projection Screen Using a Camera-
Tracked Laser Pointer,” Proc. Multimedia
Modeling (MMM 98), IEEE CS Press,
1998, pp. 191–192.

4. D.R. Olsen and T. Nielsen, “Laser Pointer
Interaction,” Proc. ACM Human Factors
in Computing Systems (CHI 2001), ACM
Press, 2001, pp. 17–22.

5. J.H. Tao and L.H. Cai, “A Neural Network
Based Prosodic Model of Mandarin TTS
System-2,” Proc. Int’l Conf. Spoken Lan-
guage Processing (ICSLP 2000), China Mil-
itary Friendship Publish, vol. II, 2000, pp.
75–78.

6. H. Zhang et al., “Robust Pose Estimation
for 3D Face Modeling from Stereo
Sequences,” Proc. IEEE Conf. Image Pro-
cessing (ICIP 2002), vol. III, IEEE Signal
Processing Soc., 2002, pp. 333–336.

7. F. Xie, G.Y. Xu, and E. Hundt, “A Face Ver-
ification Algorithm Integrating Geometri-
cal and Template Features,” Proc. 2nd
IEEE Pacific-Rim Conf. Multimedia
(PCM2001), Springer, 2001, pp. 253–260.

8. Z.Y. He and Q.X. Hu, “A Speaker Identi-
fication System with Verification Method
Based on Speaker Relative Threshold and
HMM,” Proc. 6th Int’l Conf. Signal (ICSP
2002), People’s Posts and Telecomm. Pub-
lishing House, 2002, pp. 488–491.

9. H.B. Ren and G.Y. Xu, “Human Action
Recognition in Smart Classroom,” Proc.
5th IEEE Int’l Conf. Automatic Face and
Gesture Recognition, IEEE CS Press, 2002,
pp. 399–404.

10. W.K. Xie et al., “Smart Platform: A Software

Infrastructure for Smart Space (SISS),” Proc.
4th Int’l Conf. Multimodal Interfaces (ICMI
2002), IEEE CS Press, 2002, pp. 429–434.

For more information on this or any other comput-
ing topic, please visit our Digital Library at http://
computer.org/publications/dlib.

APRIL–JUNE 2003 PERVASIVEcomputing 55

the AUTHORS

Yuanchun Shi is a professor in the State Key Laboratory of Intelligent Technology
and Systems, Department of Computer Science, Tsinghua University, China. Her
research interests include pervasive computing, human-computer communication
technology, and distributed multimedia processing. She received her PhD in com-
puter science from Tsinghua University. She is a member of the IEEE and the vice
chairperson of the Young Scientist Committee of the China Computer Federation.
Contact her at shiyc@tsinghua.edu.cn.

Weikai Xie is a PhD candidate in the Department of Computer Science at Tsinghua
University, China. His research interests include software infrastructure for smart
spaces, formal context data representation, and context-reasoning models in con-
text-aware computing. He received a BS in computer science from Tsinghua Univer-
sity. Contact him at xwk@media.cs.tsinghua.edu.cn.

Guangyou Xu is the chair professor of the Department of Computer Science,
Tsinghua University. His research interests are in computer vision, human–computer
interaction, and multimedia computing. He graduated from the Department of
Automatic Control Engineering, Tsinghua University, China. He is a senior member
of the IEEE and a standing member of the Council of China Image and Graphic
Association. Contact him at xgy-dcs@tsinghua.edu.cn.

Runting Shi is a senior undergraduate in the Department of Computer Science’s
Pervasive Computing Group at Tsinghua University, and a part-time student in the
Internet Media Group, IBM China Research Lab. Her research interests include soft-
ware infrastructures for smart spaces, media streaming, peer-to-peer computing,
and scalable multicast infrastructures. Her homepage is available at http://media.
cs.tsinghua.edu.cn/~shirunting.

Enyi Chen is a PhD candidate in the Department of Computer Science, Tsinghua
University. His major research interests include smart spaces, mobile and wireless
networks, human–computer interaction, and multimedia systems. He received his
MS in computer engineering from Northern Jiaotong University, China. Contact
him at chenenyi00@mails.tsinghua.edu.cn.

Yanhua Mao is an MS candidate in the Department of Computer Science, Tsinghua
University. He received a BS in computer science from Tsinghua University. He is
now working on software infrastructures for smart spaces. Contact him at
maoyanhua@tsinghua.org.cn.

Fang Liu is an MS candidate in the Department of Computer Science, Tsinghua
University. His research interests include computer vision, graphics, and human–
computer interaction. He received a BS in computer science from Huazhong Uni-
versity of Science and Technology. Contact him at liuf00@mails.tsinghua.edu.cn.

