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Abstract

We investigate the optimal trade-off between utility and privacy us-
ing one-sided perturbation. Unlike conventional privacy-preserving
statistical releases, randomization for obfuscating side-channel in-
formation is often constrained by infrastructure limitations. In
practical scenarios, these constraints may only allow positive and
bounded perturbations. For example, extending processing time
or sending and storing dummy messages/data is typically feasible.
However, implementing modifications in the opposite direction
is challenging due to restrictions imposed by hardware capacity,
communication protocols, and data management systems. In this
paper, we establish the foundation of the positive noise mechanism
within three semantic privacy frameworks: Differential Privacy
(DP), Maximal Leakage (MaxL), and Probably Approximately Cor-
rect (PAC) Privacy. We then present a series of results that char-
acterize or approximate the optimal one-sided noise distribution,
subject to a second-moment budget and a bounded maximal magni-
tude. Building on this theoretical foundation, we develop efficient
tools to solve the underlying optimization problems. Through ex-
periments conducted in various scenarios, we demonstrate that
existing techniques, such as Truncated Biased Laplace noise, are
often suboptimal and result in excessive performance degradation.
For instance, in an anonymous communication system with a 250K
message budget, our optimized DP noise mechanism achieves a
21x reduction in dummy messages and an 18x reduction in dummy
message latency overhead compared to traditional methods.!
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1 Introduction

Perturbation is one of the most general approaches to randomize a
processing procedure for privatizing information disclosure. Vari-
ous mathematical notions of privacy, including Differential Privacy
(DP) [21, 22], Maximal Leakage (MaxL) [27] and PAC Privacy [44]
have been established to formally quantify the attainable privacy
guarantees through noise addition.

Most commonly-adopted noises are symmetric, which, to be
more specific, are unbounded and two-sided centered around 0 (i.e.,
zero mean). Examples include standard Laplacian noise for pure
e-differential privacy (DP) [22], and Gaussian noise for approximate
(€, 6)-DP [21] and PAC Privacy [37, 44, 45].

However, many real-world applications impose specific con-
straints on the noise mechanisms. Due to application semantics,
negative noise values may be impermissible. For instance, in anony-
mous communication systems, it is feasible to inject dummy mes-
sages, but removing existing messages could compromise function-
ality [11, 40]. Similarly, in encrypted database applications, one may
pad the running time or the number of memory accesses needed to
obscure the query and database contents [14], but reducing them
could lead to errors or incorrect outputs. All of the above scenarios
can be modeled using one-sided bounded noise, i.e., noise that is
non-negative, has a positive mean (also referred to as bias), and lies
within a bounded interval.

Take DP as an example. The most common practice for adding
one-sided noise so far is to rely on a truncated and shifted Laplacian
(or geometric) distribution [14, 40]. This approach involves shifting
the mean of a standard Laplacian distribution to the positive (right)
side until the negative (left) tail becomes sufficiently small, which
will be truncated; we then redistribute the probability mass else-
where after truncation. Unfortunately, this approach does not yield
optimal error, either for a single disclosure setting or for multiple
disclosures that require composition. One key result we will demon-
strate is that, the optimal one-sided noise distribution is generally
asymmetric and heavily dependent on the security parameters. This
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Figure 1: Illustration of zero-mean Laplace/Gaussian Mecha-
nism and positive truncated biased Laplace/Gaussian Mecha-
nism of the same noise variance. (1) Laplace, the taller (red)
distribution, is less concentrated with a heavier tail compared
to Gaussian, the wider (blue) distribution. (2) To produce the
same (¢, §)-DP guarantee, truncated Laplace noise requires a
larger bias yi; but less variance compared to truncated Gauss-
ian noise. In general, the concentration of optimal DP one-
sided noise needs to be carefully selected depending on the
given (¢, §) security parameters to balance the bias (the mean
/i) and variance required, and.the optimal noise form is gen-
erally not simply either a Laplace or Gaussian.

is dramatically different from the case of non-biased noise where
independent of target DP security parameters, the optimal form
belongs to or can be closely approximated by some simple distribu-
tion class, such as staircase Laplace [26] or Gaussian [5]. Instead,
case-by-case optimization is necessary for one-sided noise.

The starkly different landscapes are largely due to the different
characteristics of the error produced by noise. Throughout this
paper, we define the error of injected noise by the expectation of its
square (second moment). For one-sided noise, both the bias (i.e., the
positive mean) and the variance of the noise distribution contribute
to the error, unlike the case of unbiased noise where only its vari-
ance affects the error. The optimal distribution of one-sided noise
thus needs to be carefully selected to balance both bias and variance
simultaneously, and, unfortunately, simply shifting classic distri-
butions, including staircase Laplace or Gaussian distributions, is
generally no longer optimal as partially illustrated in Fig. 1, though
they yield (asymptotic) optimal utility (error)-privacy trade-off in
the regime of non-biased perturbation, .

In addition to the absence of theory to understand the funda-
mental gap in utility loss/error caused by the one-sided constraint,
to the best of our knowledge, there is also no known framework to
help privacy practitioners determine the optimal one-sided noise
distribution. Note that for two-sided noise, especially in a composi-
tional setting with multiple disclosures, many software toolboxes,
including OpenDP [25] and Opacus [49], have been developed to
automatically optimize noise parameters in standard DP implemen-
tations. A library for one-sided noise mechanisms, especially for
different privacy metrics, is highly desirable.

1.1 Our Contributions

In this paper, we not only lay the foundation for characterizing the
minimal one-sided bounded noise under three semantic privacy def-
initions—Differential Privacy (DP), Maximal Leakage (MaxL), and
PAC Privacy—but also introduce an open-source library, 1ib-1sided
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-noise 2 to assist privacy practitioners in their tasks. In general,
the optimal one-sided noise does not have a closed-form expres-
sion, and the solutions vary across different privacy definitions. To
address this, we develop optimization algorithms separately with
efficient implementations in our library. These enable automatic
determination or approximation of the optimal noise under the
selected privacy metric and budget. Additionally, we provide com-
prehensive comparisons of the semantic interpretations of privacy
definitions to guide practitioners in selecting the most appropriate
metrics for addressing diverse privacy concerns across applications
(see Section 2.4). We summarize our theoretical and algorithmic
contributions below:

Differential Privacy For a single release (without composition)
with (e, §)-DP guarantee, we present the closed form of the
optimal positive, bounded noise distribution (Theorem 1). For
multiple releases, we present a new and tight composition
accounting by generalizing the Rényi divergence (Theorem
2) and transforming the determination of minimal positive
noise under T-fold composition into a constrained optimiza-
tion. Finally, we show how to iteratively apply convex opti-
mizations (Algorithm 1) to optimize the noise distribution
(Theorem 3) to approximate the optimal solution.

Maximal Leakage We prove that the optimal positive perturba-
tion strategy with minimal cost/overhead to produce log(v)-
MaxL, for an arbitrary real number v > 1, is a linear inter-
pretation of the optimal deterministic perturbation schemes
to produce log(|v]) and log([v]) MaxL, respectively (Theo-
rem 4). We then apply dynamic programming to build the
first efficient algorithm (Algorithm 2) to find the provably
optimal perturbation in polynomial time.

PAC Privacy We study the PAC Privacy bound for black-box pro-
cessing given the output variance. We prove given the second
moment budget and a maximal magnitude restriction, the
optimal positive noise must be within a family of truncated
Gaussian (Theorem 5) and the problem is reduced to opti-
mize the mean and variance of the Gaussian being truncated.
We present an efficient optimization algorithm that executes
a series of simple iterative binary searches (Algorithm 3).

1.2 Concrete Results on Applications

1.2.1  Network Traffic Leakage. Anonymous communication while
hiding who is communicating with whom has received significant
attention. It is known that even if messages are encrypted, metadata
that reveals active users can be recovered through network traffic
analysis [30, 40]. A common privatization mechanism is to ask
users to send dummy messages [29], which is essentially a positive
perturbation to the packet volume observed by the adversary. Its
privacy guarantee has been measured from a DP point of view in
[38, 40]. On the other hand, if one adopts dropping messages or
partitioning messages into multiple communications to produce a
negative obfuscation, it can break soundness unless the system has
redundancy built-in, which itself can be expensive.

Compared to truncated Laplace noise adopted in [8, 14, 33, 40],
we show the scale of optimized one-sided DP noise can be orders of

2https://github.com/Hanshen-Xiao/lib- 1sided-noise
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magnitude smaller in practice: for Vuvuzela anonymous commu-
nication [40], we achieve 21X less dummy messages with 18X less
dummy message latency overhead for a 250K message budget.

1.2.2  Mitigating Cache-Timing Attacks. The execution of crypto-
graphic algorithms or operations on different inputs takes different
times and, in practice, it is challenging to write high-performance
constant-time software for general-purpose computers [7]. This
additional data-dependent timing information could leak crypto-
graphic secrets; in some applications, timing information can be
simply characterized by hits and misses to a cache [28]. Bernstein
in [7] presented concrete cache-timing attacks to fully recover an
Advanced Encryption Standard (AES) secret key. More recently, for
OpenSSL’s constant-time code, a cache-timing attack on RSA key
generation was developed by exploiting a vulnerable code path [2].
Even in Trusted Execution Environments (TEEs), through cache-
timing and speculation attacks, Bulck et al. proposed Foreshadow
to break Intel Software Guard eXtensions (SGX) [39]. In practical
execution, it is easy to turn cache hits into misses, but not vice versa.
To obfuscate timing and cache information and provably mitigate
attacks, the corresponding modification must be positive.

In this paper, we present the first formal analysis with optimal
one-sided noise to obfuscate the cache-timing leakage in a 256-bit
AES secret key generation from S-boxes [4] under both MaxL and
PAC Privacy. In particular, we show a small random positive noise
with 1 dummy miss in expectation can provably ensure a negligible
adversarial success rate (< 272%%) to correctly recover a 256-bit
secret key (Fig. 4).

2 Preliminaries

In this section, we formally introduce three semantic and rigor-
ous privacy definitions: Differential Privacy (DP) [20, 22], Maximal
Leakage (MaxL) [27], and PAC Privacy [44]. At a high level, the
problem of information leakage control can be described by the
following generic model: for some sensitive data/input X € X*
and some processing function ¥ : X* — Y*, the output ¥ (X)
represents the release/leakage. The goal of privacy preservation
is to randomize or modify the original processing function ¥ into
a version M such that provided the randomized or noisy output
M(X), the adversary cannot implement meaningful inference on
the sensitive input X. The following privacy definitions offer for-
mal languages to quantify such hardness from different angles. In
Section 2.4, we include a comparison regarding their applicability
and the underlying operational challenges in practice.

2.1 Differential Privacy

DEFINITION 1 (DIFFERENTIAL PrIvAcY [21]). Given a dataset
universe X*, we say that two datasets X,X’ C X* are adjacent,
denoted as X ~ X', if X can be obtained by replacing one datapoint
inX', ie, X = (X'/x") Ux. A randomized algorithm M is said to be
(e, 8)-differentially-private (DP) if for any pair of adjacent datasets
X, X’ and any event set Y in the output domain of M

P(M(X) € Y) < e - P(M(X') € Y) + 6. 1)

(€, 8)-DP enjoys an intuitive interpretation where e€ and § repre-
sent a multiplicative and an additive term, respectively, to capture
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the worst-case divergence/difference between the likelihood func-
tions produced by two arbitrary adjacent datasets X and X’. From
a hypothesis testing perspective, small € and § will imply either a
large Type I or Type II error [19]. In practice, Gaussian and Laplace
mechanisms are the workhorses to randomize a processing func-
tion for €(, §)-DP guarantee [23]: the scale of noise is calibrated
to the sensitivity, i.e., the maximal possible change to the output
when one arbitrarily replaces a single datapoint. Unfortunately,
tight sensitivity is in general NP-hard to compute [48]. Thus, an im-
portant concept in DP research is composition, which captures the
cumulative privacy risk from multiple releases and plays a key role
to privatize algorithms in practice. A complicated algorithm with
intractable sensitivity, such as DP-SGD, is usually decomposed into
multiple, relatively simpler suboperations with tractable/bounded
sensitivity, such as gradient mean estimation of a batch of samples
[1,41, 46, 47]; one can then perturb the intermediate outcomes from
each suboperation, assuming that they are released, and derive an
upper bound by composing the privacy loss of the release from
each iteration, as formalized in the following proposition.

Proposition 1 (Advanced Composition [24]). For any e, > 0 and
do € (0,1), the class of (e, &)-differentially private mechanisms
satisfies (e, T8, + 8)-differential privacy under T-fold adaptive com-
position, where, for anyé >0,

€ =+/2Tlog(1/8) - € + Tep (e — 1). ®)

When € = 0(1/VT), the latter term Tey (e — 1) is 0(1) and the
advanced composition (2) roughly states that e scales in O(NT)
under T-fold composition, which is general and only counts on the
(€9, 80)-DP guarantee per release.

2.2 Maximal Leakage

Similar to DP which considers an input-independent guarantee,
Maximal Leakage (MaxL) is another operationally-interpretable
definition, which measures how much more likely the adversary
can identify the true input given the release. Let U € U™ denote
the user’s secret, X € X* denote some intermediate parameter of
a processing mechanism M : X* — Y*, whose input and output
domains are X* and V", respectively, and Y € Y* denote the output
of M. Here, U*, X* and Y* are all assumed to be finite sets, which
can be generalized to the continuous case [27]. Clearly, U, X and Y
form a Markov Chain, denoted as U — X — Y; the formal definition
of MaxL is given below.

DEFINITION 2 (MAXIMAL LEAKAGE [9, 27]). Let Adv : Y* — U*
be an arbitrary algorithm that the adversary applies to recover the
secretU from the observation on'Y. MaxL with respect to the processing
procedure U — X — Y is defined as
sup 44, Pr(U = Ado(Y))

X Y) = 1 3
Lx=1 U:L?E)I()—Y o8 max;, Pr(U = u) @)
which is known to enjoy an equivalent form [3, 27, 32]
LX > Y)=log Z max P(Y = y|X = x). ()
e xeX*

Compared to DP with a particular focus on individuals, the pri-
vacy concern of MaxL is regarding the full reconstruction over
the entire input U, where (3) upper bounds the multiplicative gain
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to adversary’s posterior knowledge on the secret U after observ-
ing the release Y. To be more specific, if a mechanism M sat-
isfies log(v)-MaxL, then the ratio between the optimal posterior
chance that an adversary can correctly identify the true input,
sup 44, Pr(U = Ado(Y)), and the optimal a priori success rate
that the adversary can identify the true input, sup; Pr(U = 0),
is bounded by e for any possible prior distribution of U.

Additionally, the non-adaptive composition of MaxL enjoys a
simple summation form [27]. In the same setup U — X — Y =(1n,Y),
let Y; and Y; be the releases from two mechanisms which are inde-
pendent conditional on X, then we have

LX< LX - Y+ LX > Y. ()

2.3 PAC Privacy

From an input-independent perspective, Differential Privacy (DP)
and Maximal Leakage (MaxL) measures privacy risk/loss in terms
of the worst-case distinguishability and the multiplicative gain of
successfully identifying the secret, respectively. However, both DP
and MaxL require white-box algorithmic analysis—such as sensi-
tivity or output likelihood—of the processing function ¥ to derive
provable privacy solutions. This reliance makes it challenging to
handle (side-channel) leakage from complicated circuits/processors
or involved protocols which generally lack closed form; meanwhile,
membership and identification may also not tightly capture broader
inference problems, such as (partial) reconstruction attacks.

In contrast, PAC Privacy supports black-box privatization. A
noise solution can be automatically determined to resist any tar-
get adversarial inference, and PAC Privacy analysis only requires
black-box access to the underlying secret generation and processing
function 7 [44]. Conceptually, PAC Privacy challenges an adver-
sary to return a satisfactory estimation X of the sensitive input
X and quantifies the posterior success probability. The criterion
of satisfactory reconstruction reflects the level of leakage deemed
unacceptable by the secret holder, where, for example, X approx-
imates the salary attribute of a record X with error smaller than
1000, or predicts at least 200 bits correctly of a 256-bit secret key X.
The formal definition is given below.

DEFINITION 3 ((8,, p, D) PAC PRrivAcy [37, 43-45]). For a pro-
cessing mechanism M : X* — Y*, data distribution D, and an
inference criterion function p(-,-), we say M satisfies (5,, p, D)-PAC
Privacy if the following experiment is impossible:

A user generates data X from distribution D and sends M(X) to
an adversary. The adversary who knows D and M is asked to return
an estimation X on X such that with probability at least (1 — dp)s
p(X,X) =1.

In Definition 3, the probability is based on the randomness in
both secret generation X «— D and the mechanism M. The criterion
of satisfactory estimation is captured by the indicator function p
where p(X, X) = 1if and only if X successfully recovers the target
feature of X. Continuing with the previous examples, we can define
p(X,X) = 1 iff the estimation error of X on the salary attribute
smaller than 1000 or if X and X collide in least 200 bits.

Operationally, to upper bound (1-3,), [44] studies the difference
between the optimal prior and posterior success rate in f-divergence
[36]. Let (1 - 8,,,,) denote the optimal a priori success rate, i.e., the
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best chance that an adversary can return a satisfied estimation X
such that p(X, X) = 1 before observing the release M (X):

1—80,p =argyrcx XE’_ID(P(X',X) =1). (6)

[44] introduces two Bernoulli variables 15, and 15, ,, where Pr(1s, =
1) =(1-6p) and Pr(15,,, = 1) = (1 = do,p), respectively, and con-
siders the f-divergence between these two Bernoulli distributions,

), (7)

1-5,
1- 0,

é
N = Dr(1s, l115,,) = 80, f (57) + (1= 80, f(

o.p P
where f(-) can be an arbitrary convex function. It is noted that
given the data distribution D and the inference task p of interest,
the optimal prior rate (1 — &) is determined. Thus, an upper
bound of A, in (7) combined with a lower bound of the prior rate
(1-6,,p) will lead to an upper bound of the target posterior success
rate (1 — d,). In particular, as a special case of Theorem 1 in [44],
when we select the f-divergence to be the KL-divergence, i.e., by
selecting f(t) = tlogt in (7), AﬁL is shown to be bounded by the
well-known mutual information [16], as described below.

Proposition 2 ([44]). For arbitrary p and input distribution D,

5y 1-6,
1-6,)1
5.) + (1=, log (=

where MI(X; M(X)) is the mutual information between X and M(X).

AP, =5, log(

) < MI(X; M(X)), (8)
Sop

Stemmed from (8), [44] shows how to automatically determine
the minimal perturbation e for a black-box processing function ¥
based on high-confidence estimation on the (co-)variance of ¥ (X),
which ensures that its noisy version M(X) = F(X) + e satisfies
provable PAC Privacy guarantees.

2.4 Proper Selection of Privacy Metric

In the previous subsections, we formally introduced three privacy
definitions. In practice, before selecting a privacy metric, one should
first determine the privacy concern of interest — which part of in-
put data X we aim to protect. The objective could vary from an
attribute, to a data point, to relationship between datapoints. DP
puts a particular focus on individual privacy and can provide mean-
ingful guarantees especially when the release is an aggregation of
multiple individuals, for example, the network traffic when a set of
users communicate [40] or the memory pattern when one accesses
a database [14], and the goal here is to prevent the adversary from
inferring who is talking or which file is accessed. As a comparison,
MaxL is not restricted to only make an individual indistinguish-
able, but also to bound the posterior advantage for an adversary
to correctly identify the true input. Thus, MaxL can capture the
privacy leakage (adversarial reconstruction hardness) with respect
to the entire input and can be applied to study the leakage from,
for example, processing time or power consumption of a specific
program [18], where individual or attribute privacy is not meaning-
ful or well-defined. Compared to DP and MaxL, PAC Privacy offers
the most general framework to probabilistically describe inference
hardness in recovering any specified related information regarding
the secret X. However, PAC Privacy requires an a priori setup (secret
entropy), which is different from the input-independent guarantee
in DP and MaxL. In the following, we demonstrate the applicability
and operational challenges of the three frameworks.
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To randomize a processing function 7 to satisfy DP guarantees,
one needs to first bound sensitivity, the worst-case change (supy,_ -
|F(X) — F(X’)|| for arbitrary two adjacent datasets X ~ X’) of
the output when one arbitrarily replaces a datapoint. As mentioned
before, tight sensitivity is intractable in many practical applications,
and, usually, one needs to introduce some artificial control, such
as clipping and decomposition [1], to produce a sensitivity bound.
As for MaxL, sensitivity analysis is not necessary, but MaxL still
requires the knowledge of likelihoods across all input selections.
Different from DP and MaxL, which cannot view the underlying
processing ¥ as a black box, PAC Privacy enables automated pri-
vatization for general inference hardness, not only restricted to
distinguishability or identification. However, PAC Privacy requires
that the secret distribution D is given or one can repeatedly sam-
ple from D. Thus, PAC Privacy is more suitable for statistical data
processing or secret key protection, where the input has a clear
form of entropy. For example, in protecting an I-bit secret key from
cache timing attacks [7, 18, 39], the distribution D of a random
secret key X is a uniform distribution over {0, 1}' and thus PAC
Privacy is easily applicable. However, when our secret X cannot
be sampled or does not enjoy tractable entropy, for example, the
messages in anonymous communication, input-independent guar-
antees becomes the only known feasible solution.

3 A Lesson from Biased Noise —Tradeoff between
Mean, Variance and Concentration

In this section, we provide some intuition on the following two
important questions: a) why existing positive noise constructions
could be sub-optimal, and b) how to construct the optimal positive
perturbation. We mainly focus on DP positive noise in this section,
but the implications of the results are general, which instruct our
following study on the optimal one-sided noise.

In prior works on mitigating side-channel leakage with DP guar-
antees, Truncated Biased Laplace (TBL) noise [6, 8, 15, 34] and its
discrete version, Truncated Geometric noise [13, 50] are among the
most-commonly used perturbations. We first take the continuous
TBL noise as the example; see definition below.

DEFINITION 4 (TRUNCATED BIASED LAPLACE NOISE [6]). Given
parameters pu, > 0, A, > 0 and R > 0, a (g, A, R) Truncated Biased
Laplace (TBL) truncates a Laplacian distribution

1 z-
Lapy 1, (2) = gexp(- L) ©)

on range [0, R]. The resulted noise e has a probability distribution

|z — prl
AL

1o<z<R is an indicator which equals 1 when z € [0, R], otherwise 0.

Ple=z) = = ! exp(— ) - Lo<z<r (10)

HLALR

R - : N
Zy AR = /0 exp(—lZA—ELl)dz is the normalization parameter.

The following lemma describes the (g, A) selection of TBL noise
such that it can produce an (¢, §)-DP guarantee.

Lemma 1 (Parameter of Positive Laplace Noise). Suppose a process-

ing function ¥ : X* — R such that for an arbitrary adjacent dataset

pairX ~ X', |F (X)-F(X')| < s, i.e., the sensitivity of F is bounded
. _ 1

by s. Then, if we select AL, =s/e, pyr, 2s + £ - log DA and

R =2y, such a (pr, Ar, R)-TBL perturbation ensures (€, §)-DP.

CCS 25, October 13-17, 2025, Taipei, Taiwan

Intuitively, TBL noise can be viewed as that we perform the fol-
lowing modifications to a standard zero-mean Laplace distribution
Lap, ,, defined in (9). First, we shift the Lap, ; uniformly by p into
Lapy’ ,; second, we truncate its support domain from (oo, o) to
[0, R] and normalize the remaining over [0, R]. Started from TBL
noise, we have several remarks on positive noise mechanisms and
the resultant DP guarantees, compared to the regular zero-mean
noise mechanism:

(1) e-DP is impossible and a failure probability is neces-
sary. For an arbitrary positive noise e and an arbitrary de-
terministic processing function, the respective support sets
of the distributions of ¥(X) + e and F(X’) + e, for X ~ X',
F(X) # F(X’), cannot be identical. There always exists
some subset O such that Pr(¥(X) + e € O) > 0 while
Pr(F(X’) + e € O) = 0. Once the outputs fall within O,
the adversary can perfectly distinguish the input between X
and X’, and thus an additive failure rate in a positive noise
mechanism is necessary. In TBL, to ensure such a failure
probability bounded by §, we need to select a large enough
shift/bias . such that the tail probability between [0, s] or
[R —s,R] is bounded by 8, where s is the sensitivity bound.

(2) Heavier Utility Loss: Consider the utility loss captured by
the second moment of the injected noise e,

E[e’] = ( E[e] )* +E[(e - E[e])?]. (11)
~—— [ —

Given the positive requirement of e, E[e], the mean of e, must
be non-zero, and thus compared to the regular zero-mean
noise mechanism, in general, we need to pay an additional
utility loss determined by the square of the mean, i.e., (E[e]) 2
proportional to (u)? in the case of TBL noise.

From Lemma 1, we know that TBL noise behaves as a sufficient
method to produce (e, §)-DP. A natural question is whether TBL is
optimal. Before we give a complete answer in the next section, we
first show a more intuitive negative answer that TBL is not optimal
in producing a tight utility-privacy tradeoff under composition.
When we consider T-fold composition of a noisy mechanisms using
TBL, the cumulative failure probability from the tail scales with
T by union bound. Thus, to ensure (¢, §) after T compositions, by
advanced composition (Proposition 1) with 5= 8/2, it suffices to
ensure (€, 6y)-DP in each round, where

€ =0(———) and & = %.

\/2T log(2/6)

Thus, to ensure (€, §)-DP by TBL noise, from Lemma 1, we

may select A, = 2 and pp = O(4;, - log % +s). Consequently, the
second moment of the constructed TBL noise is

2[e%) = 0{(u)* + 0)?) = 0( B og2(1/8) + 1), (19

for constant s. It is worthwhile noting that the mean/bias of the TBL
noise e is O(log T/6) times larger than its standard deviation, as un-
derlined in (13). This matches our intuition that given an O(e™%) de-
caying rate of Laplace distribution, only after an O(Ar log 1/(5/T))
length distance from its mean, can we ensure its noise tail is small

(12)

3Throughout the paper, we use support set to represent the domain for a distribution,
over which there is non-zero probability density/mass.
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enough in O(§/T). As a comparison, we may similarly consider the
Truncated Biased Gaussian (TBG) noise, as an analog of TBL.

DEFINITION 5 (TRUNCATED BIASED GAUSSIAN). Given g > 0 and
Ag > 0, the probability density function of a (ug, A, R) Truncated
Biased Gaussian (TBG) noise e is defined as

1 (z - pg)*
Ple=2z)=1 . exp(—
(e =2) =1o<z<r Zoro p( 22

) (14)

_ (R (z=p)* : R
where Z,,; 3R = /0 exp(—T)dz is for normalization.

If we adopt TBG noise to produce (€, 8)-DP under T composi-

A/Tlog(1/5)
= 022 e =

tions, similarly it suffices to select Ag

O(+/log(T/6)Ag) and R = 2p¢. Then,

E[e’] = O((m)* + (A0)?) = O - (log(T/8) +1)). (15)

Comparing (13) with (15), we observe the following:

Square of Mean Larger than Variance: In both positive noise
mechanisms with either TBL or TBG, from (13) and (15), to ensure
a small tail in a scale §/T, the bias parameter yy (i) needs to be
a polynomial of (log(T/d)) times larger than their standard devi-
ation /T log(1/8)/e, required by the regular (zero-mean) Laplace
/ Gaussian mechanism to produce the same (¢, d) under T-fold
composition. Such a gap cannot be simply mitigated by a noise
of larger variance: the bias yy (yig) scales with the standard devia-
tion, controlled by Ag (pig), and a larger variance only makes the
distributional decay slower, requiring an even larger mean/bias.
Concentration vs. Variance: A closer look at the underlined terms
in both (13) and (15)—which capture how many times the mean
(or bias) exceeds the standard deviation—reveals that the bias of
the TBG noise is smaller than that of the TBL noise by a factor of
O(log(T/6)). This arises from the fact that the Gaussian distribution
is more concentrated. Specifically, the tail of the Gaussian decays at

Tlog(1/5)
62

a rate of O(e‘zz), compared to O(e~?) for the Laplace distribution.
This faster decay enables the Gaussian mechanism to use a smaller
bias while still achieving the desired tail bound. We illustrate this
in Fig. 1 (on page 2).

Indeed, if we expand all constants in (13) and (15), we find that
the TBG mechanism requires a larger noise variance than the TBL
mechanism. This aligns with our intuition: to achieve the same
statistical divergence with a faster-decaying noise distribution, a
larger variance is necessary to compensate.

The above two observations suggest that the optimal positive
noise distribution requires a careful tradeoff between mean (bias),
variance, and concentration. To close the utility-loss gap relative to
zero-mean noise, we seek a distribution with sufficient concentra-
tion to keep the bias small, while still providing a sharp tail bound
to maintain a low failure probability (at most §/T), guarding against
distinguishability via differences in support. At the same time, the
distribution must not be overly concentrated, which would result
in an excessively large variance.

4 Positive Noise for Differential Privacy

In this section, we systematically study the optimal positive noise
mechanism for Differential Privacy (DP). We consider a discrete

Hanshen Xiao, Jun Wan, Elaine Shi, and Srinivas Devadas

processing function ¥ : X* — Y* € Z, whose sensitivity is 1, i.e.,
for two arbitrary adjacent datasets X ~ X’ € X*, supy_y |F(X) —
F(X")| < 1. Our goal is to determine the optimal positive noise
distribution of e over a bounded set [0 : R] = {0,1,---,R} such
that its second moment E[e?] is minimal while (X) + e satisfies
an (¢, §)-DP guarantee (under T-fold composition).

Remark 1 (General Sensitivity). In the above setup we normalize
the sensitivity to be 1, while all our following results on DP can be
generalized to arbitrary integer sensitivity s by leveraging the idea
of group DP: if our noise mechanism satisfies (e, §)-DP with sensi-
tivity being 1, then for the case of sensitivity s, its corresponding DP
guarantee scales to (e/s, O(8/s)) [23].

4.1 Optimal Positive Noise for a Single Release

We begin by examining the optimal positive noise mechanism for
(€, 8)-DP in a single release scenario without composition (T = 1).
We will prove the following general conclusion: given an (¢, )-
DP budget, the optimal noise distribution that minimizes the k-th
moment for any k € Z* is identical and has a closed-form expression.
Furthermore, as R — oo, meaning that even if there is no bounded
restriction for the noise e, the optimal positive noise distribution
remains inherently bounded. To be formal, we use P, = {po, p1,-- - }
to denote the noise distribution where p; = Pr(e = i). The k-th
moment of e is defined as E[e¥] = 32, i - p;.

Theorem 1 (Optimum for Single Release). Given a processing func-
tion ¥ of sensitivity 1, among all possible distributions of a positive
noise e over [0, +00) which ensure an (€, §)-DP guarantee of the noisy
version ¥ () + e, the following distribution with probability mass
function given in (1) below,

_ 5_e€i
Pi=5. . ee2oi)

is optimal in a sense that it achieves the minimal k-th moment, for
any positive integer k. Here, ' is either 20 —1 or 2w, and ¢ € [e™%,1]
is for normalization such that the sum of p; equals 1. Here, © is a
turning point, defined as

ifi <o

ifo<i<o,

(16)

1 log( N e -1
Y= 8 ec+1 d(ec+1)

). (17)

Theorem 1 shows that the optimal distribution form is identical,
in a form of (16), regardless of k. We provide some insights on how
the parameters w, " and c are determined. For given w, we consider
the following sequence {p;(w)} in a staircase:

S- €i
pi(w) ={ ¢

5o if oy <i<20.

ifi<w (18)

(18) is the ideal noise shape to ensure an e-multiplicative difference
given sensitivity 1. To further ensure p;(w) is a valid probability
mass, we need to select w such that S(w) = Z?L_"O pi(w) = 1. How-
ever, S(w) = 1 may not have integer solutions, and we address this
by setting w = min{w’ € Z* | S(w’) > 1}, and introduce a scaling
parameter ¢ € (0,1] to normalize p; for i € [w,2w]. If c < €72,
the (e, §)-DP guarantee can no longer be maintained. In such cases,
we adjust the upper bound of i from 2w to 2w — 1, ensuring that
c> e
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As a summary, Theorem 1 suggests that given a range restriction
R, either no noise distribution within [0, R] can ensure the (¢, §)-DP
requirement, or the optimal P, must be supported on [0, Ry] for
some Ry < 2w < R, with w defined in (17).

In Table 1 and 2, we include numerical results on the second
moment of the TBL noise [14] and the optimal noise (from Theorem
1) to achieve the same DP guarantees in various setups. Generally
speaking, for stronger DP guarantees (smaller € and &), Theorem 1
brings more significant improvement.

Table 1: Comparison between the expected square (second
moment) of Truncated Bounded Laplace (TBL) Noise and
the optimal noise (Theorem 1) for various (¢,6 = 107*) DP
guarantees for a single release.

€=0.5 e=1 €=2 €e=4 €=8
TBL 265.5 83.0 27.1 9.8 4.3
Thm 1 244.5(-8%) 68.9(-17%) 17.0(-37%) 4.1(-58%) 1.0(-77%)

Table 2: Comparison between the expected square (second
moment) of Truncated Bounded Laplace (TBL) Noise and
the optimal noise (Theorem 1) for various (¢,6 = 10°°) DP
guaranteesfor a single release.

€=0.5 e=1 €=2 €=4 €e=38
TBL 648.1 187.7 56.3 18.3 6.9
Thm 1 608.1(-6%) 171.5(-8%) 37.7(-33%) 9.1(-50%) 1.1(-84%)

4.2 Hybrid Rényi DP (HRDP)

In the previous section, we have studied the optimality of positive
noise for (€, §)-DP in a single iteration. The analysis becomes more
involved when we need to further consider composition. Although
we introduced advanced composition of (¢, §)-DP in Proposition
1 but we need to mention that (2) is not perfectly tight (both in
constants and asymptotically, if we do not ignore the logarithm term
[19]). This is especially true when we have additional information
on the output distribution of M(X). For example, when the noise
is Gaussian [1], it is known that the (e, §) metric does not fully
characterize the statistical difference between M(X) and M(X")
to produce the tightest composition. To this end, more involved
DP definitions or accounting methods are proposed, such as zero-
concentrated DP [10] and Rényi DP [31], which are both established
based on Rényi divergence or moment functions. We formally define
Rényi DP as follows.

DEFINITION 6 (RENYI DIFFERENTIAL PRIVACY [31]). A random-
ized algorithm M satisfies (a, €(a))-Rényi DP (RDP), for some @ > 1,
if for any pair of adjacent datasets X ~ X', Do (Ppmx) IPmx7)) <
€(a). Here, P pq(x) and P pq(x7) represent the distributions of M(X)
and M(X’), respectively, and

0u(PIQ) =~ log [ aw BT s )
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represents a-Rényi Divergence between two distributions P and Q
whose density functions are p and q, respectively.

When the output domain Y* of M is discrete, one can simply
replace the integral in (19) by summation over elements y € Y*
to obtain the discrete RDP version. RDP can be used to elegantly
handle the composition of privacy leakage and enables a simple
conversion to (¢, §)-DP, as characterized below.

Proposition 3 (RDP Composition and Conversion to (¢, §) DP [31]).
Forany a > 1, the class of (a, €y(a)) -RDP mechanisms satisfies (¢, §)-
differential privacy under T-fold adaptive composition for any € and
d such that

€ > Teg(a) —log(8) /(o — 1). (20)

However, unfortunately, RDP cannot be directly applied to han-
dle positive noise mechanisms. As demonstrated in Section 3, with
one-sided or bounded noise, the support domains of the output dis-
tributions produced by two adjacent datasets, P p((x) and Pp(x7),
cannot be exactly the same: there always exists some y within the
support set of M(X) but beyond the support set of M(X") such
that P(M(X) = y) # 0 while P(M(X’) = y) = 0, which leads to
an unbounded ratio P(M(X) = y)/P(M(X’) = y) = oo for two
adjacent datasets X and X’. Thus, the « Rényi divergence

Byt (ZMX)) )a:/m (M) =9)*
M(X") P(M(X,)) . (P(M(X,) :y))a—l

is not well-defined and Proposition 3 is not applicable. To this end,
we present a generalization by computing the composition under
positive noise in a hybrid form. The high-level idea is to measure
the likelihood divergences separately in two cases: the part over the
common (overlapped) support set is still measured through Rényi
divergence while the remainder is controlled by a failure rate.

We consider an arbitrary processing function perturbed by some
one-sided noise, denoted by M : X* — Y*. For an input set X, we
use Sg(X) C Y* to denote the subset of all degenerate events:

Sa(X) = {y | BIM(X) =y) =0}. (22)

Accordingly, we define Partial (o, Rqp(X,X’))-Rényi Divergence
(PRD) for two adjacent datasets X ~ X’ as follows,
_— PMX) =9)°
a =1 " Jyeysg00) BOMX) =)=~
Comparing (23) and (19), PRD only measures the divergence within
the subset Y*/S4(X’) where P(M(X) = y) > 0. In the following,
we present Hybrid RDP (HRDP) to capture the cumulative privacy

risk accounting for the release both within or outside the degenerate
set Sq. We formally define (, €45, §,)-HRDP as follows.

(21)

Rap (X, X') = dy. (23)

DEFINITION 7 (HYBRID RDP). A mechanism M : X* — Y* c R?
satisfies (@, €4,p, 8p)-HRDP if for arbitrary two adjacent datasets X
and X', the degenerate events are bounded as

sup Pr (M(X’) € Sa(X)) < 6,
XX’

and their PRD defined in (23) is also bounded as

sup Ry p (X, X') < €qp.
XX
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Theorem 2 (HRDP Composition). For T mechanisms M;,i =
1,2,---, T where each M; satisfies (a, e;’;,, 1) ’))-HRDP, the composi-
tion of M| satisfies (e, §)-DP such thatfor any §’ >0,

log(1/8' U
€> gp%, and5> Y 5 + 6. (24)

i=1 i=1

Compared to the regular composition of RDP described in Proposi-
tion 3, Theorem 2 demonstrates the following generalization: one
can still apply partial Rényi divergence Ry, (X, X”) between P ((x)
and IF’ M( xv) over the non-degenerate domain Y*/S4(X"), captured
by ea ,p» to bound € in (24); on the other hand, the probability over
the degenerate set S;(X”), captured by 5;,”, is simply additive to
the global failure rate §.

For the discrete case, one can simply replace the integral in (23) by
a summation and Theorem 2 still holds. As a final remark, the idea
in Theorem 2 can be generalized to other composition accounting
methods, for example, through the characteristic function [51],
where we can similarly analyze the characteristic function over

degenerate and non-degenerate domains, respectively.

4.3 Noise Optimization with Composition

With HRDP, now, we have a more powerful tool and a clearer
characterization to handle the DP composition of general noise
mechanisms. Given the objective global € and § bound in (24), re-
spectively, a natural idea to determine the optimal noise distribution
is to minimize (24) given the budget on &, second moment B and
maximal magnitude restriction R. However, one remaining obstacle
here is that we need to specify the degenerate set S; in the first
place: the objective (24) varies with different selections of Sy. To
address this, the following lemma provides a clearer picture on the
concentration of the optimal positive noise distribution.

Lemma 2 (Contiguous Support Set). To achieve (€, )-DP under
T-fold composition, the optimal bounded positive noise e € [0,R]
with the minimal second moment must satisfy the following property:
Pr(e = 0) > 0 and if there exists some u such that Pr(e = u) = 0,
thenPr(e > u) = 0.

Lemma 2 states the following fact: the probability mass of op-
timal positive noise must be consecutively assigned along some
interval [0, Ry] for Ry < R. To be specific, for a given Ry, let Pg, =
{po, p1, - - - pr, } denote a noise distribution e supported over {1, 2,

-, Ry}, where Pr(e = i) = p;. When sensitivity equals 1, in
this discrete setup, the output distributions produced by two adja-
cent datasets X and X’ are either identical or differ by a +1 shift,
and without loss of generality, we assume Sz(X) = {pg,} and
Sa(X") = {po}. Therefore, by Lemma 2, the bound of € in (24) can
be equivalently expressed as a function H(Ry, Pg,) of Ry and Pg,:

(pi)”
e +log(5 Tp ),

(pi-1)” 1
Z( S o))

H(Ro, Pg,) = ; max{TlogZ s
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H(Ry, Pg,) captures the worst case of HRDP by taking the maximal
of €4, (X, X") with py and €, (X', X) with pg, . Therefore, we trans-
form determining the optimal noise distribution into the following
constrained optimization,

min min H(Ry, Pg,), (25)
Ry PR,
0
st Y pi=1L0<p <Li=12-,R, (26)

i=1

Ro
0<Ry< R,Z i?
i=0

In (26) and (27), we describe the constraints: (26) ensures that Pg,
is a distribution; (27) ensures that e is supported within [0, R] and
the second moment of Pg, is bounded by B?, and the probability
of degenerate events Sy is bounded by §/T. However, (25) is not
directly solvable: since as the selection of range R, varies, both
the form of objective H(Ry, Pg,) and the constraints (26) and (27)
change, due to a different pg, in S;. To address this, we consider
decomposing the original optimization over H(Ry, Pg,) into the
optimization over the tail and Ry, respectively. We first consider the
optimization on H(Ry, Pg,) restricted to noise distributions with
fixed Ry, leftmost §; and rightmost &, tails. We introduce

Ro
D(81, 8, B, Ro) = {Pr, : ) ipi < B po = 81, pr, = 5},

i=0

-is32,0<é,R<é. (27)
p Po < PRy < 7

to capture the set of distributions supported on [0 : Ry] with second
moment bound B and fixed py = §; and pg, = 6.

Theorem 3 (Efficiency of Algorithm 1). Given selections of 6;, 6,
and Ry, minimization of H(Ry, Pr,) is equivalent to minimizing

(pi)~ (pi- 1)
max
Z (pi-1)*~ i) Z (pi)* i)
which is convex with respect to Pg,. In addition, given Ry and Pg,,
H(Ry, Pg,) is also convex with respect to py and pg,, respectively.

The above theorem demonstrates the following facts:

(a) Given &, 6, and Ry, minimizing H(R, Pg,) for P, € D
(61, 8y, B,Ry) is a convex optimization over a convex con-
straint set D(8y, 6, B, Ry).

(b) Given Ry and Pg,, H(Ry, Pg,) is convex w.r.t. the leftmost
and rightmost slot py and pg,.

To efficiently approximate the optimal noise distribution, we con-
sider fixing Ry = R and utilizing the convexity shown in Theorem 3
to propose a two-layer algorithm to alternatively optimize (&, §,)
and Pg, as Algorithm 1.

4.4 Experiments and Comparisons

In this subsection, we set out to produce a set of experiments to show
the power of both hybrid RDP (HRDP) accounting (Theorem 2) and
optimized noise distribution (Algorithm 1). In practice, the second
moment budget B and the maximal magnitude R of noise e capture
the expected additional overhead and the worst-case redundancy
required, respectively. For example, in anonymous communication
[38, 40] or database operations [8, 14], B and R correspond to the
expected and maximal dummy messages sent or files written. In



One-Sided Bounded Noise

(a). T'=500 and § = 10-° (b). T'=1000 and § = 10~

-—TBL, Advanced Composition
—s—TBL, HRDP
ey Optimized Noise, HRDP

-e— TBL, Advanced Composition

e —s—TBL, HRDP
& Optimized Noise, HRDP

o

Logarithm of Noise Second Moment

Logarithm of Noise Second Moment

s & 7 8 9 1 > a3 4 7 8 9 1
Epsilon e

(c). T =500 and § =105

> s s s
Epsilon e

(d). T'=1000 and § = 108
kg& —&—TBL, Advanced Composition

—e—TBL, HRDP
Optimized Noise, HRDP

—&—TBL, Advanced Composition
_ —o—TBL, HRDP
gg . Optimized Noise, HRDP

>

Logarithm of Maximal Noise Magnitude

Logarithm of Maximal Noise Magnitude

2 3 4 5 & 71 8 9 1
Epsilon €

3 4 s 6 71 8 9
Epsilon e

Figure 2: Second moment and maximal magnitude compari-
son between different positive DP noises and accounting.

Fig. 2(a), under T = 500 compositions, we show the required second
moment E[e?] of positive noise to produce (e, §)-DP with § fixed
to be 107> in the following three scenarios: 1) by discrete TBL
noise in Definition 4 [8, 14, 40, 50] using advanced composition
(Proposition 1); 2) still by discrete TBL noise, but using HRDP for
composition accounting (Theorem 2); 3) the optimized noise based
on HRDP and Algorithm 1. The (1,2,3) cases are captured by the
red, blue and green lines, respectively. With a similar setup, in Fig.
2(b), we consider a scenario with more compositions T = 1,000
and also a smaller failure rate budget § = 10~8. Comparing Case
1) (red line) and Case 2) (blue line), we can see HRDP produces a
tighter composition bound. Additionally, when we compare Case
2) (blue line) and Case 3) (green line), it can be seen that after
optimization, we significantly improve the noise to produce the
same (€, §) parameter: the second moment of optimized noise is
around 10X and 20X smaller than that of TBL in Fig. 2(a) and (b),
respectively. Such improvement is more significant with a larger
composition T and a smaller privacy budget (e, §).

With the same setup as Fig. 2(a,b), in Fig. 2(c,d), we consider the
required maximal magnitude R for different noises with different
accounting methods. Similarly, after optimization, one may find a
better noise distribution accommodated in a larger interval with
a weaker requirement on R. Compared to TBL noise, the maximal
magnitude of optimized noise required is generally 5X smaller in
these two examples. To give a more concrete example, we con-
sider the same setup in the anonymous communication protocol
Vuvuzela [40], where each user has a T = 250,000 message budget
(composition) for a global budget ¢ = log(2),6 = 107, By TSL
noise and advanced composition [40], the expected and the worst-
case number of dummy messages sent per communication round is
300K and 600K, respectively, with an end-to-end additional latency
around 18.4 seconds. As a comparison, by selecting a much smaller
R =30, 000 in Algorithm 1, the optimized noise requires only 14K
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Algorithm 1 Optimized Positive Noise for Hybrid RDP

1: Input: Second moment budget B, range restriction R, composi-
tion number T, failure probability budget &.

2: Randomly initialize both tail rate 8}, 8, € (0,5/T), and accord-
ingly initialize Pg € D(Jy, 8y, B, R).

3. Alternately run convex optimizer on (Jy, §,) with respect to the
loss function H(R, Pg) with updated Pg, and on Pg with respect
to the loss function H(R, Pr) given updated (9, §,) such that
61,8, € (0,5/T), until they converge.

4: Output: Pg.

and 30K messages on average and in the worst case, respectively,
with latency shortened to 1 second.

5 Positive Noise for Maximal Leakage
5.1 Theory and Algorithm

In this section, we study the optimal positive perturbation for the
MaxL measure. We consider a deterministic function F : X* =
{X1,Xo, -+, X} > Y* ={1,2,--- ,m}, whose input domain X* is
formed by m possible selections and the output domain, capturing
the information leakage, has n states. A state in Y* of larger number
(shortened to higher state in the following) has higher overhead, for
example, taking a longer processing time, producing more cache
misses or requiring a larger memory.

To randomize ¥ with positive noise, we consider the random-
ized version of ¥, denoted by R¥, where similarly R¥ : X* =
{X1,X5,-++, Xu} = Y ={1,2,---,m}. It is noted that an arbi-
trary (either deterministic or randomized) processing function can
always be represented by a transition matrix P,x,, where the en-
try at the crossing of the i-th row and j-th column (denoted as
pij € [0, 1]) represents the probability that we map X; to the j-th
state in the output domain Y*. The positive perturbation constraint
requires that the support set of RF (X;) is within [F (X;), m].

To provide more intuition, we illustrate the corresponding tran-
sition matrix P, for the original processing function ¥ and its
positively perturbed version R¥, in Fig. 3(a) and Fig. 3(c), 3(d),
respectively. We consider an example when n = m =7, and in Fig.
3, each orange box represents a non-zero probability p;; to map X;
to the j-th state. Adding positive noise is intuitively "decomposing"
and "moving" the orange boxes in Fig. 3(a) to the right hand side. In
Fig. 3(c) and 3(d), we give two positive perturbation schemes. For
example, in Fig. 3(c), ¥ (X1) = 1 (corresponding to p1; = 1), and for
a feasible positive perturbation, R¥ is only allowed to map X; to
higher states, starting from 1 to 7. The perturbed RF version in
Fig. 3(c) changes the mapping of X; from state 1 to 2; in Fig. 3(d),
the solution becomes that with 0.5 probability RF (X;) = 1 and
with 0.5 probability RF (X;) = 2.

As defined in (4), the MaxL privacy leakage is measured as
L(X — Y) =log ¥ yey- maxyex+ P(Y = y|X = x) which equals
log ( 27:1 max; pij). Given the transition matrix P,x,,, it can be
viewed as the logarithm of the sum of the maximal element p;; in
each column. In the following, we formalize the cost to produce a
mechanism with a satisfied MaxL loss. We introduce an n X m cost
matrix Cpxm Where each entry c;; represents the cost of mapping X;
to the j-th output state. Under the positive noise restriction, ¢;; = oo
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(a) Original processing output distribution (b) Optimal deterministic processing for
log(3)-MaxL
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Figure 3: Illustration by transition matrix P,x,, : X* —» Y*
for positive noise perturbation in Maximal Leakage (MaxL)

for j < F(X;), i.e, the cost of mapping X; to lower states compared
to the original #(X;) is formidably large. In addition, we also as-
sume that for any fixed i, ¢;; for j > F(X;) is in a non-decreasing
order, i.e., the cost to the higher states is more expensive. Putting
the privacy risk and the cost together, determining the optimal
perturbation translates to the following constrained optimization
problem on transition matrix P = {p;;}nxm:

n m m
mPinC(P) = Z qi Zcijpij s.t. log (Zmaxpij) < log(v).
=1 j=1 =

(28)
Here, g; is the prior distribution of X;, which captures the frequency
that X; is selected in the processing 7.

Before we introduce our main results to determine the optimum
of (28), we need to point out a special case of RF with deterministic
modifications to 7. In general, to ensure log(v)-MaxL for an integer
v > 1, a sufficient method is to simply select v states in Y* and
ensure that the support set of R¥ on any X; is within them. An
example is illustrated in Fig. 3(b), where we select v = 3 columns
(states {2, 5,7}) of the transition matrix P,x,, and define an RF
which maps X; to the closest higher state {2, 5, 7} compared to 7 (X;)
(see Fig. 3(b)). For example, 7 (X;) = 1 moves to the closest higher
state selected RF (X;) = 2; F(Xy) = 4 becomes RF (Xy) =5.

The idea of finding the closest higher state can be further gen-
eralized into a water-filling operation and the representation of
the optimal processing scheme can be further simplified from a
transition matrix Py, to an m-dimensional vector P, , as studied
in [42]. Let Py, = (P1, p2. - - - Pm), Where p; represents the upper
bound of p;; in the j-th column. $,, ensures log 2L pj-MaxL. We
say that #,, dominates a transition matrix Py, iff p; j < pj for
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any i, j. Given a selection of P, for all transition matrices domi-
nated by $,,, the one minimizing the cost function (28) must be in
a water-filling form, i.e., starting from the state # (X;), the optimal
mechanism would iteratively fill the j-th slot up to probability p;
for j = F(X;), ¥ (X;) + 1, -+ ,m, until the sum }’; p;; becomes 1.
A formal statement and conclusion is given as follows.

Proposition 4 (Water-filling Lemma [42]). Among all mechanisms
with transition matrix P = {p;j|i € [1:n];j € [1: m]} dominated
by Pm = (P1, P2, + » Pm), the optimal one with the minimal cost is in
the following form: for any i and j, p;j = min{p;, 1 — Zi;lﬂx,-) P}
Thus, the P, for a deterministic mechanism must be a binary vec-
tor and in particular, if we restrict a feasible positively perturbed
RF to be deterministic for v-MaxL for some integer v > 1, it is
equivalent to selecting v states, denoted by A = {aj,az,--- ,ay},
between min; 7 (X;) and max; ¥ (X;) and sets p; = 1 for j € A and
it is noted that max; ¥ (X;) must be selected in A.. Therefore, de-
termining the optimal deterministic solution for log(v)-MaxL with
an integer v is reduced to searching over all v-subsets of states with
Proposition 4 and comparing their optimal water-filling schemes.
A formal definition is given below.

DEFINITION 8 (OPTIMAL DETERMINISTIC SCHEME FOR INTEGER 0).
When v € Z*, we define DS, as the set of the deterministic scheme(s)
that achieve the minimal cost conditioned on log(v)-MaxL.

With the above understanding, there are still two remaining

challenges to fully characterize the optimal positive perturbation
for MaxL. First and more fundamentally, even when v is integer, is
the optimal deterministic scheme also the global optimum for all
(possibly randomized) schemes, and for general v, is the optimal
solution related to the optimal deterministic schemes in some way?
Second, enumeration-based searching takes O(n - (’Z)) time. Can
we more efficiently determine the optimal scheme? We will answer
both questions affirmatively in the following.
Theorem 4 (Optimal Perturbation for MaxL). When v is some
positive integer, the optimal solution(s) to (28) are exactly DS,. When
v =[v]—A for A € (0,1) is not an integer, then the optimal solution(s)
to (28) is the linear interpolation of DS|,| and DSy, as,

A-DS|y) + (1= A) - DSpq
={1- Pl_z)J +(1-2)- Pm | PI_UJ € DSLvJsP(v] € DS[U]}A

Theorem 4 is an improvement of the results in [42] and states the
following facts. For log(v)-MaxL with integer v, the optimal solution
should be deterministic and in DS,. For log(v)-MaxL with non-
integer v, both the cost function and the privacy function are linear
with respect to the elements in DS|,| and DSy,7, and the optimal
solution is in a weighted average of two arbitrary deterministic
solutions from DS, and DSy, respectively. Theorem 4 also paves
the path to efficiently determine the optimal solution, where it
suffices to find optimal deterministic schemes in DS, (or DS|,| and
DS[,1)- This is solvable by dynamic programming in O(n - m?) time.

To be specific, we introduce 7 (i, k) (sub-algorithm 2 in Algo-
rithm 2) that considers the optimal deterministic mechanism when
(1) p1, -+, pi-1 are givenand p;—; = 1;and (2) X72; p; equals k. This
condition means that given the current selection of py, - - - , pi_1, we
still need to pick k additional states within [a : m]. Note that there
are totally n - m possible inputs for 7 (-, -). For any 7 (i, k) such that
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k > 0, we consider the next state to select in the optimal scheme,
i.e., the minimal j > i such that p; = 1. Once j is given, 7 (i, k) is
reduced to the sub-problem 7 (j, k — 1). This means that 7 (i, k)
can be solved once we solve 7 (j, k — 1) for all j > i. Therefore, we
can use dynamic programming to solve the problem and the time
complexity is O(n - m?).

As an illustration, in Fig. 3(c) and 3(d), we show the optimal
positively-perturbed scheme with minimal cost minp C(P) forov =3
and v = 3.5 when we select the prior distribution g; = 1/n to be
uniform and ¢;; = j if j > F(X;), otherwise ¢;; = co.

5.2 Applications: AES Secret Key Protection

We provide a concrete application of Algorithm 2 to determine the
optimal perturbation scheme to control the MaxL of cache leakage
when implementing AES in an S-box implementation [4]. We adopt
the same setup and evaluation method as in Metior (more details
can be found in Section 7 of [18]). Described in MaxL language, we
consider U* to be a 256-bit secret key space, i.e., U = {0, 1}2%,
X corresponds to the intermediate number of distinct cache lines
the program touches [12]. Finally, the observation y € Y* captures
the number of misses. We use Metior [18] to determine both the
prior distribution on X* and the mapping from X* to Y*. Based
our evaluation in this example, X* is formed by 370 intermediate
states and Y* = {1,2,- - - , 38}, i.e,, the maximal number of misses
is bounded by 38 in all cases. In Fig. 4(a), we consider two kinds
of cost functions Cpxm,. The black line corresponds to the case
where ¢;; = jif j > F(X;) otherwise ¢;; = oo, which takes the
expected number of misses as the cost. The blue line captures the
case where ¢;; = j — 7 (X;) if j > #(X;) otherwise c;; = co, which
captures the expected number of additional misses. As illustrated
by Fig. 4(a), for log(v)-MaxL, the optimal cost minp C(P) is linear
when v € [|v], [v]]. Moreover, as v increases, the cost decreases
and approaches that of the original processing function. To further
interpret the results, it is noted that the prior success rate for an
adversary to correctly identify a 256-bit secret key is 272°. From
Fig. 4 we show that at a minimal cost of 6.8 and 1 dummy misses on
average, the adversarial posterior success rate to correctly recover
the secret key after observing the leakage is bounded, negligibly,
by 27253 and 272%%, respectively.

Finally, we want to emphasize that proposed Algorithm 2 is the
first efficient algorithm to provably determine the optimal scheme in
MaxL; prior works either only measure the MaxL of some heuristic
protocols without providing privatization solutions [18] or only
approximate the optimal perturbation [42].

6 Positive Noise for PAC Privacy

In this section, we study how to determine the optimal postive
noise for PAC Privacy. From Proposition 2, we know the posterior
advantage measured in KL-divergence AIPQ = Dkr(1s, 115, ,), for
an arbitrary adversarial inference captured by p, is upper bounded
by the mutual information MI(X; F(X) + e), where X is the sensi-
tive input generated from some distribution D, ¥ is the processing
function and e is some positive noise. As one of the key motivations
of PAC Privacy is to enable automatic privatization of black-box
processing ¥, here, we do not put any additional assumptions on
the output distribution Y = 7 (X) but only assume the variance of
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Algorithm 2 Optimal Mechanism for Maximal Leakage

1: Input: Objective processing function F : X* =
{X1,Xs,--- , XN} — {1,2,---,m}, prior distribution Px+ of
input over X* where p; = Pr(X = X;); cost weight c;; of map-
ping X; to the state j; objective MaxL budget log(v).

2. if v is integer then

3. Run Sub-algorithm 1 to determine the optimal deterministic

mechanism Mg (v) and output My (v).

4 else

5. Run Sub-algorithm 1 to determine the respective optimal

deterministic mechanisms Mg (|v]) and Mgy ([o]).

6: LetA=J[o]—o.

7. Output AMop (o)) + (1 - HY)Mop([o]).

8: end if

Sub-algorithm 1: Optimal Deterministic Mechanism M. Takes
as input an integer k = v and returns the optimal deterministic
mechanism in vector form.

1: if k = 1 then

2 Returns (0,0, - - - , 0, 1), which allocates all input to m.
3: else

4 Initialize i < 0 and p « (0,0,---,0).

5. for k' in order of k,k —1,---,1do

6 i — 7 (i,k").Next.

7 pi < L

8 end for

9:  Returnp = (p1, - ,pm)-

10: end if

Sub-algorithm 2: Dynamic Programming algorithm 7 (a, k). 7~
takes as inputs a position a € [m] and the remaining budget k.
1: if k =1 then
22 Next < m.

3 Cost « 2| 7(X;)2a) Pi * Ciom-
4: Return (Next, Cost).

5: else if a > m + 1 then

6:  Return (null,0).

7: else

8 fora’in{a+1,,---,m+ 1} do

9 costy « T (a',k —1).Cost + ¥ sex,<a'—1 Pi * Ci(a'-1)-

10:  end for

11:  Next < arg mingy costy’.

122 Cost « mingy costy .

13:  Return (Next, Cost).

14: end if

Y, Var(Y) = E[(Y - E[Y])z], is bounded by a%. As demonstrated
in [44], when the output domain Y* of ¥ is bounded, Var(Y) can
be estimated efficiently in high confidence. Within this general
black-box setup, we do not assume either the input X* or output
domain Y* of the processing function  : X* — Y* is finite, and
F(X) for X « D can be either discrete or continuous.

In the following, we focus on positive noise e in a continuous
distribution within some bounded interval [0, R]. Still, the utility
loss is defined by the second moment of e, E[e?] = p2 + 02, required
to be bounded by some budget B. Here, we use p, and o2 to denote
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Figure 4: AES Secret Key Protection with Optimal Positive Perturbation in Maximal Leakage and PAC Privacy

Algorithm 3 Generating noise for PAC privacy

1: Input: The maximum range for the positive noise R; the second
moment budget B; the standard deviation of output y, oy,.

2: Use binary search to find o, that minimizes Lg;4(0).

3. Return Lg;4(0,).

Sub-algorithm L;;: given a standard deviation o, find the best
mean 4 such that the normal distribution N (g, o) gives the
optimal PAC privacy loss. Return the corresponding PAC loss.

1. if S(&,6) < B then

2:  Return %.

3: else

4 Use binary search to find p’ such that S(¢’,0) = B and
return p1’.

5. end if

the mean (bias) and the variance of the noise e, respectively. To
determine the optimal noise distribution D, it reduces to solve the
following min-max problem,

min max MI(X; F(X) +e)
De.E[e?]<B D'F(X),Var(‘F(X))Saé
29
= min max h(Y +e) — h(e). (29)
D¢,E[e?]<B Dy Var(Y)<o%,

In (29), we use h to represent the differential entropy, where h(e) =
f_D:o —P(e = z) log(P(e = z))dz, and adopt the classic entropy ex-
pression of mutual information [16]. (29) models that given a sec-
ond moment budget B of injected noise e, we aim to minimize the
worst-case mutual information for arbitrary processing output dis-
tribution Y = ¥ (X) with bounded variance 012,, the only knowledge
assumed about the black-box processing function .

On the other hand, since Y and e are independent, the variance
of Y + e is upper bounded by cr% + ¢2. It is well-known that for
any continuous distribution with bounded variance, the Gaussian
distribution achieves the maximal entropy, where h(Y + e) < % .
(10g(27r(0)2, +02)) + 1)[16]. Thus, (29) is upper bounded as

min . (10g(27r(0'§ +02) + 1) — h(e).

1
De.E[e?]<B 2 (30)

The following theorem demonstrates that the optimal distribution
to (30) under constraints must be a Gaussian distribution N (g, o)
truncated and normalized within [0, R].

Theorem 5 (Optimal Positive Noise Class for PAC Privacy). Sup-
pose e is restricted within [0,R] and E[e?] < B, then the optimal
noise distribution D, of (30) must be in a truncated Gaussian form

1

R-— _

a(@(F) - o(F)
for some pi € [0,R], i.e., some Gaussian distribution N (u, o) condi-
tional on [0, R]. Here, ®(t) is the cumulative probability function of

N(0,1), ie, ®(t) = [*_1/V2r - e /L.

By Theorem 5, it suffices to optimize the two parameters 1 and o
of a truncated Gaussian distribution within [0, R]. Since both o, and
h(e) in (30) can be expressed using i and o, the objective problem
with the associated second moment constraint can be rewritten as

In (31), we use the following notations: « = —p/o and f = (R —
u)/o with ¢(x) = 1/V2r - e~**/2 and (1) = _/_tm 1/Ver - e=t/24dt.

At a first glance, both the objective function obj(y, o) and the
second moment constraint S(y, o) < B in (31) are complicated
without a closed form. However, assisted by symbolic analysis in
Mathematica, we have the following important observations:

a) Given o, if we ignore the second-moment budget B (or equiv-
alently set B = o0), Obj(p, o) in (31) decreases when y < R/2
and increases when y > R/2, and the minimum is achieved when
H=R/Z

b) Given o, the second moment S(y, o) of a Gaussian noise
N (11, %) of mean y and variance o? truncated over [0, R] strictly
increases with p.

The above two observations suggest that when o is given, we
can adjust the y value to reduce Obj(y, o) as follows:

(1) We first evaluate S(R/2,0). If S(R/2,0) < B, then return

R/2 as the optimal y;
(2) Otherwise, we need to find the maximum y such that S(y, o) <
B. Given that S(y, o) increases with y, this is equivalent
to finding p such that S(y, 0) = B and we can use binary
search to find an approximation up to any x accuracy within
©(log(1/k)) time.
Now, let (o) denote the optimal p given o, and provided a) and b),
Obj(u(o), o) also enjoys a nice property, which first decreases and
then increases with o, leading to a unique optimum. This allows a
straightforward use of binary search again to find a good o value,
summarized as Algorithm 3.

With Algorithm 3, we continue the study on cache leakage of an

AES key in Section 5.2 and present near-optimal positive noise in

P(e=2) = e g

z€[O,R]>
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PAC privacy in Fig. 4 (b,c). In the same setup, following the same
evaluation by Metior [18], the variance of released cache misses
from a random 256-bit secret key equals 012, = 20.6. In Figure 4(b),
we plot the leakage measured in mutual information across various
second moment budget B when R = 5, 10, 20. Note that given R,
the p of optimal noise must satisfy y < %. This is because the
selections of (y, o) and (R — p, o) produce the same privacy loss,
but (R—p, o) has alarger second moment. Thus, the second moment
of the optimal noise is bounded by R?/3 and the privacy loss will
decrease with B until B = R?/3. This matches the observation from
Figure 4(b), where all curves of TBG noise become flat after some
turning points. Meanwhile, there is a gap between the privacy
loss produced by positive TBG noise and unbounded, zero-mean
Gaussian noise [44], which narrows as R and B increase.

In Fig. 4(c), we plot the privacy loss against the maximum mag-
nitude R, when B = 25, 50, 100, and oo, respectively. Here, we also
observe that the privacy loss stops decreasing with large enough
R. Recall that if R is large enough such that S(R/2,0) > B, the
optimal p should be selected such that S(y, o) = B. Therefore, af-
ter R reaches the threshold determined by S(R/2, o) = B, further
increasing R only results in minor changes to the y and o of the
optimal distribution, and thus provides limited improvement to the
privacy risk bound.

7 Additional Related Works

Bounded Noise Mechanism: From an asymptotic viewpoint, the
maximal magnitude R of perturbation to produce DP guarantees
under compositions has been studied in [17]. In particular, [17]
proved that when 6 > e 9 there exists some bounded noise
within [-R, R] such that R = O(4/T log(1/6)/¢) to produce (e, d)-
DP under T-fold composition. This suggests that when ¢ is not too
small, the bounded noise mechanism can asymptotically match the
same second moment of a general noise mechanism such as Gauss-
ian without constraints. However, though the noise construction of
[17] is shown to enjoy the asymptotically-optimal dependence on R,
non-asymptotically, its second moment may not be always optimal
and can be worse than TSL in the examples considered in Fig. 2. As
a comparison, in this paper, we show how to non-asymptotically
optimize the noise distribution given various budgets with the more
powerful HRDP to handle the composition.

Optimal Mechanism for MaxL: The properties of MaxL and its
relationship to other information theory quantities, such as Sibson
mutual information, have been studied in [27, 35] and the optimal
scheme for MaxL has also been previously studied in [27]. In partic-
ular, [27] proved that, with proper non-decreasing assumptions on
the cost matrix C,,xm, the convex hull of the cost functions deter-
mined by deterministic schemes is identical to that formed by both
deterministic and randomized schemes. In this paper, we improve
their results and show a stronger linear interpolation representation

to fully characterize the optimal scheme for arbitrary log(v)-MaxL
using the optimal deterministic schemes in Theorem 4. Based on
Theorem 4, we present the first efficient algorithm to determine
the optimal solution in polynomial time.

8 Conclusions and Future Work

In this paper, we studied the optimal positive perturbation in vari-
ous privacy metrics. With a focus on the utility loss measured by
(weighted) second moment of noise, we provided insights into the
characteristics of the optimal perturbation using finite parameters
that enable efficient optimization. However, it is worth noting that
the expected absolute value of the injected noise may not be the
most accurate measure of the resulting utility loss in practice. It
would be interesting to generalize our techniques to handle more
general utility loss measurements.

We also want to mention, besides mitigating side-channel leak-
age, one-sided noise is also useful for applications with a specific
privacy-preserving overestimation (optimistic) or underestimation
(pessimistic) requirement. In addition, for our results on DP, it
should be noted that Rényi DP is not the tightest known method to
compute composition; even more powerful tools are known, such
as, f-DP [19] or through characteristic functions [51]. Thus, one
interesting generalization is to consider the hybrid version of those
more advanced composition accounting methods. One may follow
a similar idea to consider the hybrid versions of those measures on
positive noise mechanisms.

For PAC Privacy, in this paper we focused on the general black-
box processing without assuming anything specific about the dis-
tribution of #(X) except its variance. When more information is
given with respect to ¥, an interesting problem is to generalize
Theorem 5 to accommodate the stronger prior knowledge on #.
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