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Efficiency of iO ?

Heuristic iO

Quasilinear efficiency

● VBB-obf for PRF ⇒ full obf
[Applebaum]

● VBB-obf + SNARG ⇒ full obf
[Boneh’s talk]
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Can we have the best of both worlds?

Heuristic iO

Quasilinear efficiency

● VBB-obf for PRF ⇒ full obf
[Applebaum]

● VBB-obf + SNARG ⇒ full obf
[Boneh’s talk]

Provably secure iO

Polynomial blowup

Input-length barrier?
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    Our Result

Quasilinear efficiency

Provably secure iO

via
Propositional proof of equivalence

EF



    Our Result

● FHE, poly (or subexp) secure
● OWF, subexp secure
● iO for ~Oλ(1)-size circuits

∃ iO* , poly (or sub-exp) secure, with 
 ~Oλ(Ncirc + Nproof) obf, and eval time

EF



 and why?

What is

Propositional proof of equivalence
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Functional 
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Conjecture:  R “knows” proof of equiv
R must enumerate all inputs 

 
R must enumerate all inputs 

 
⟹

# hybrids exponential in input len
 

⟹
sec param ≥ poly(input len)

 
⟹

folklore:
The input length barrier[“ [

”



iO 
adversary

Hard problem Reduction R

Proof: C0 = C1

Overcoming the input-len barrier



C0

C1

=
C1

≈Relaxed iO 
security
 C0

Short proof: 
C0 = C1



Expressive power of relaxed notion ?
 

 

Jain and Jin:

Sufficient for almost all 
known applications of iO [“ [

”



Short proof: C = C*

Identical except an O(log n)-sized subcircuit

              ’s blueprint
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Short proof: C = C*

O(log n)-equivalent

Padded 
C C1 C2

…= = = = Padded 
C* 

              ’s blueprint
 



O(log n)-equivalent circuits

Functionally equiv, differing in impl
O(log n) size

C1                                       C2
=



iO for O(log n)-equivalent circuits suffices



Challenge 1

iO for O(log n)-equivalent circuits

Challenge 2



~n gates 

Challenge 1

Challenge 2

padding

iO for log-equiv circ
assume: BARG with 
ideal efficiency (not known)

              ’s approach
 

eval time



Challenge 1

Challenge 2

padding

iO for log-equiv circ

Our approach

~n gates 

assume: proof size ~ circuit size

~n eval time



Challenge 1
padding



Padded circuit is a universal circuit

But with 

Challenge 1
padding



padding
Challenge 1

Routing gates

Regular gates



Challenge 2 iO for log-equiv circ

Gate by gate obfuscation

Mix-and-match attack
e.g., use values from a different eval



Challenge 2 iO for log-equiv circ

each wire carries a BARG provenance 
proof, O(n) time per wire

achieve the same but w/o BARG, 
~O(1) time per wireOurs



Applications of our quasilinear iO

Multi-input functional encryption with 
quasilinear efficiency

iO for TM with quasilinear efficiency

assume: short proofs of equivalence



Challenge 1

Challenge 2

padding

iO for log-equiv circ

~n gates 

~n gates 

assume: proof size ~ circuit size



Proof of 
Equivalence
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Intermediate
wires

Proof

Input variables

Proof terms

Intermediate
wiresOut2

P1

P2

P3

PN 

… P4

⊢ P1, P2

P1 , P2 ⊢ P3, P4

P2 , P4  ⊢ P5

P10, PN-1 ⊢ PN

out1 == out2

Out1
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Proof of 
Equivalence

C1                       C2

Intermediate
wires

Proof

Input variables

Proof terms

Intermediate
wiresOut1 Out2

P1

P2

P3

PN 

… P4

⊢ P1, P2

P1 , P2 ⊢ P3, P4

P3 , P4  ⊢ P5
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out1 == out2

…



Example of a Proof Line

⊢ P ➞ (Q➞P)
⊢ ¬¬P ➞ P
 
P, P ➞ Q ⊢ Q

…

Axioms

Modus 
Ponens

⊢ P1, P2

P1 , P2 ⊢ P3, P4

P3 , P4  ⊢ P5

P10, PN-1 ⊢ PN



Q1  Q2  Q3

O(1) variables

P3              P4                P5

O(1) subcircuit

Each proof line:  O(1)-sized subcircuit

⊢ P1, P2

P1 , P2 ⊢ P3, P4

P3 , P4  ⊢ P5

P10, PN-1 ⊢ PN



Example: ∄ Short Equivalence Proof 

// do something

If PRG(inp) = R then
// do special

Else
// proceed normally

R ∉ img(PRG)
// do something

If PRG(inp) = R then
// do special

Else
// proceed normally

=
[SW13]



Example: ∃ Short Equivalence Proof 

// do something

If Enc(0, r) = C then
// do special

Else
// proceed normally

C: encryption of 1
// do something

If Enc(0, r) = C then
// do special

Else
// proceed normally

=
      PKE w/ short proof of correct decryption



UCirc(C1) UCirc(C2 ≡ 1)

UCirc(Cproof ≡ 1)
out1 out2

AND

outproof AND out1

outproof

Padded C1
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Differing subcircuit: 
all gates adjacent to
               and 

A1σ         A2σ         Bσ

★

Q1            Q2            Q3

Path through routing network

Path from leaf to root

★ Regular gate being reconfigured

Regular gate

AND-tree



Routing gates

Regular gates



Challenge 1

Challenge 2

padding

iO for log-equiv circ

~n gates 

~n gates 

assume: proof size ~ circuit size



Assert σ1, σ2 are valid MACs for ct1, ct2 using Kmac, Kmac

m1, m2 = Dec(ct1, ct2) using Kenc, Kenc 

Compute out = g(m1, m2)

Output ct’ = Enc(out), σ’ = MAC(ct’) 

ct1,  σ1 ct2,  σ2 
1 2

21

out out

using Kenc, KMAC



Assert σ1, σ2 are valid MACs for ct1, ct2 using Kmac, Kmac

m1, m2 = Dec(ct1, ct2) using Kenc, Kenc 

Compute out = g(m1, m2)

Output ct’ = Enc(out), σ’ = MAC(ct’) 

ct1,  σ1 

1 2

21

can mix ct, σ  from 2 evaluations

ct2,  σ2 

out out

using Kenc, KMAC



Assert π proves that (ct1, ct2, h1, h2) consistent w/ h’

Assert σ1, σ2 valid for (ct1,h1), (ct2,h2) using Kmac, Kmac

m1, m2 = Dec(ct1, ct2) using Kenc, Kenc 

Compute out = g(m1, m2)

Output ct’ = Enc(out), σ’ = MAC(ct’, h’) 

ct1, h1, σ1  

1 2

21

out out

ct2, h2, σ2       h’, 
π 

using Kenc, KMAC



Assert π proves that (ct1, ct2, h1, h2) consistent w/ h’

Assert σ1, σ2 valid for (ct1,h1), (ct2,h2) using Kmac, Kmac

m1, m2 = Dec(ct1, ct2) using Kenc, Kenc 

Compute out = g(m1, m2)

Output ct’ = Enc(out), σ’ = MAC(ct’, h’) 

ct1, h1, σ1  

1 2

21

ct2, h2, σ2       h’, 
π 

using Kenc, KMAC

outout

BARG 
proof

SSB 
hashes



Avoid BARGs 
through 

non-blackbox 
use of SSB hash

[HW15]



x000  x001  x010  x011  x100  x101  x110  x111

x00                          x01= x011

x0= x011                                          x1

x* = x011  Avoid BARGs 
through 

non-blackbox 
use of SSB hash

[HW15]



Public key



x0       x1         x2        x3         x4       ∅     ∅      ∅     
x0       x1         x2         ∅         ∅         ∅     ∅      ∅     

Prefix consistency 
proof for hx, hy

x:
y:

hx, hy



x0       x1         x2        x3         x4       ∅     ∅      ∅     
x0       x1         x2         ∅         ∅         ∅     ∅      ∅     

★★

★

★ ★★

    ★:  1 hash 
★★:  2 hashes

Prefix consistency 
proof for hx, hy

hx, hy



Compute all N 
hashes & proofs 

incrementally 
in ~N time

every wire: hash dependent wires
every gate: prove input hash consistent with output hash

 Topological order



Quasilinear iO   for TM EF

UObfM(L)

On inp length L, output  iO  (OTM(M))
EF

Use RAM obfuscator to obfuscate [JLL23]



Quasilinear iO   for TM EF

UObfM(L)

On inp length L, output  iO  (OTM(M))
EF

Use RAM obfuscator to obfuscate [JLL23]

size and obf time                                           eval time

Assume: 



Also in our paper

Detailed construction and proofs

Applications to MIFE

Applications to iO for TM

eprint/2025/307



Open questions

Prove/disprove the input-len barrier

Concretely efficient iO?



Thank you !
elainershi@gmail.com


