
Elaine Shi

Quasilinear Indistinguishability Obfuscation

via
Propositional Proofs of Equivalence

Joint work with Yaohua Ma, Chenxin Dai

Indistinguishability Obfuscation

Constant round
concurrent ZK

2-round
MPC

Functional
encryption

Witness encryption

Deniable encryption

Succinct
garbled RAMSNARG

Universal
samplers

[GGHRSW’13]

1st Candidate
iO

Feasibility of provably secure iO?

many attempts

[JLS’20]

iO from
well-founded
assumptions

[GGHRSW’13]

1st Candidate
iO

[JLS’20]

iO from
well-founded
assumptions

[GGHRSW’13]

1st Candidate
iO

Efficiency of iO ?

Provably secure iO

Polynomial blowup

Input-length barrier?

Efficiency of iO ?

Efficiency of iO ?

Heuristic iO

Quasilinear efficiency

● VBB-obf for PRF ⇒ full obf
[Applebaum]

● VBB-obf + SNARG ⇒ full obf
[Boneh’s talk]

Provably secure iO

Polynomial blowup

Input-length barrier?

Can we have the best of both worlds?

Heuristic iO

Quasilinear efficiency

● VBB-obf for PRF ⇒ full obf
[Applebaum]

● VBB-obf + SNARG ⇒ full obf
[Boneh’s talk]

Provably secure iO

Polynomial blowup

Input-length barrier?

 Our Result

Quasilinear efficiency

Provably secure iOEF

 Our Result

Quasilinear efficiency

Provably secure iO

via
Propositional proof of equivalence

EF

 Our Result

● FHE, poly (or subexp) secure
● OWF, subexp secure
● iO for ~Oλ(1)-size circuits

∃ iO* , poly (or sub-exp) secure, with
 ~Oλ(Ncirc + Nproof) obf, and eval time

EF

 and why?

What is

Propositional proof of equivalence

C0

C1

Functional
equiv.

iO Security
 =

C0

C1

=
Functional

equiv.

C1

≈
Comp.
ind.

iO Security
 C0

iO
adversary

Hard problem Reduction R

iO
adversary

Conjecture: R “knows” proof of equiv
R must enumerate all inputs

Hard problem Reduction R

iO
adversary

Conjecture: R “knows” proof of equiv
R must enumerate all inputs

Hard problem Reduction R

iO
adversary

Conjecture: R “knows” proof of equiv
R must enumerate all inputs

Hard problem Reduction R

R must enumerate all inputs

⟹

Conjecture: R “knows” proof of equiv
R must enumerate all inputs

R must enumerate all inputs

⟹

hybrids exponential in input len

⟹

Not a formal proof

Conjecture: R “knows” proof of equiv
R must enumerate all inputs

R must enumerate all inputs

⟹

hybrids exponential in input len

⟹
sec param ≥ poly(input len)

⟹

Not a formal proof

Conjecture: R “knows” proof of equiv
R must enumerate all inputs

R must enumerate all inputs

⟹

hybrids exponential in input len

⟹
sec param ≥ poly(input len)

⟹

folklore:
The input length barrier[“ [

”

iO
adversary

Hard problem Reduction R

Proof: C0 = C1

Overcoming the input-len barrier

C0

C1

=
C1

≈Relaxed iO
security
 C0

Short proof:
C0 = C1

Expressive power of relaxed notion ?

Jain and Jin:

Sufficient for almost all
known applications of iO [“ [

”

Short proof: C = C*

Identical except an O(log n)-sized subcircuit

 ’s blueprint

Padded
C C1 C2

…= = = = Padded
C*

Short proof: C = C*

O(log n)-equivalent

Padded
C C1 C2

…= = = = Padded
C*

 ’s blueprint

O(log n)-equivalent circuits

Functionally equiv, differing in impl
O(log n) size

C1 C2
=

iO for O(log n)-equivalent circuits suffices

Challenge 1

iO for O(log n)-equivalent circuits

Challenge 2

~n gates

Challenge 1

Challenge 2

padding

iO for log-equiv circ
assume: BARG with
ideal efficiency (not known)

 ’s approach

eval time

Challenge 1

Challenge 2

padding

iO for log-equiv circ

Our approach

~n gates

assume: proof size ~ circuit size

~n eval time

Challenge 1
padding

Padded circuit is a universal circuit

But with

Challenge 1
padding

padding
Challenge 1

Routing gates

Regular gates

Challenge 2 iO for log-equiv circ

Gate by gate obfuscation

Mix-and-match attack
e.g., use values from a different eval

Challenge 2 iO for log-equiv circ

each wire carries a BARG provenance
proof, O(n) time per wire

achieve the same but w/o BARG,
~O(1) time per wireOurs

Applications of our quasilinear iO

Multi-input functional encryption with
quasilinear efficiency

iO for TM with quasilinear efficiency

assume: short proofs of equivalence

Challenge 1

Challenge 2

padding

iO for log-equiv circ

~n gates

~n gates

assume: proof size ~ circuit size

Proof of
Equivalence

C1 C2

Intermediate
wires

Proof

Input variables

Proof terms

Intermediate
wiresOut2

P1

P2

P3

PN

… P4

⊢ P1, P2

P1 , P2 ⊢ P3, P4

P2 , P4 ⊢ P5

P10, PN-1 ⊢ PN

out1 == out2

Out1

Proof of
Equivalence

C1 C2

Intermediate
wires

Proof

Input variables

Proof terms

Intermediate
wiresOut2

P1

P2

P3

PN

… P4

⊢ P1, P2

P1 , P2 ⊢ P3, P4

P2 , P4 ⊢ P5

P10, PN-1 ⊢ PN

out1 == out2

…Out1

Proof of
Equivalence

C1 C2

Intermediate
wires

Proof

Input variables

Proof terms

Intermediate
wiresOut2

P1

P2

P3

PN

… P4

⊢ P1, P2

P1 , P2 ⊢ P3, P4

P2 , P4 ⊢ P5

P10, PN-1 ⊢ PN

out1 == out2

…Out1

Proof of
Equivalence

C1 C2

Intermediate
wires

Proof

Input variables

Proof terms

Intermediate
wiresOut1 Out2

P1

P2

P3

PN

… P4

⊢ P1, P2

P1 , P2 ⊢ P3, P4

P3 , P4 ⊢ P5

P10, PN-1 ⊢ PN

out1 == out2

…

Example of a Proof Line

⊢ P ➞ (Q➞P)
⊢ ¬¬P ➞ P

P, P ➞ Q ⊢ Q

…

Axioms

Modus
Ponens

⊢ P1, P2

P1 , P2 ⊢ P3, P4

P3 , P4 ⊢ P5

P10, PN-1 ⊢ PN

Q1 Q2 Q3

O(1) variables

P3 P4 P5

O(1) subcircuit

Each proof line: O(1)-sized subcircuit

⊢ P1, P2

P1 , P2 ⊢ P3, P4

P3 , P4 ⊢ P5

P10, PN-1 ⊢ PN

Example: ∄ Short Equivalence Proof

// do something

If PRG(inp) = R then
// do special

Else
// proceed normally

R ∉ img(PRG)
// do something

If PRG(inp) = R then
// do special

Else
// proceed normally

=
[SW13]

Example: ∃ Short Equivalence Proof

// do something

If Enc(0, r) = C then
// do special

Else
// proceed normally

C: encryption of 1
// do something

If Enc(0, r) = C then
// do special

Else
// proceed normally

=
 PKE w/ short proof of correct decryption

UCirc(C1) UCirc(C2 ≡ 1)

UCirc(Cproof ≡ 1)
out1 out2

AND

outproof AND out1

outproof

Padded C1

outproof

C1 1

1

out1 out2

outproof ∧ out1

outproof

C1 C2

1

out1 out2

outproof ∧ out1

outproof

C1 1

1

out1 out2

outproof ∧ out1

outproof

C1 C2

1

out1 out2

outproof ∧ out1

outproof

C1 C2

Proof

out1 out2

outproof ∧ out1

outproof

C1 1

1

out1 out2

outproof ∧ out1

outproof

C1 C2

1

out1 out2

outproof ∧ out1

outproof

C1 C2

Proof

out1 out2

outproof ∧ out1

outproof

C1 C2

Proof

out1 out2

outproof ∧ out2

outproof

C1 1

1

out1 out2

outproof ∧ out1

outproof

C1 C2

1

out1 out2

outproof ∧ out1

outproof

C1 C2

Proof

out1 out2

outproof ∧ out1

outproof

C1 C2

Proof

out1 out2

outproof ∧ out2

Almost symmetric

outproof

C1 1

1

out1 out2

outproof ∧ out1

outproof

C1 C2

1

out1 out2

outproof ∧ out1

outproof

C1 C2

Proof

out1 out2

outproof ∧ out1

outproof

C1 C2

Proof

out1 out2

outproof ∧ out2

Almost symmetric

Differing subcircuit:
all gates adjacent to
 and

A1σ A2σ Bσ

★

Q1 Q2 Q3

Path through routing network

Path from leaf to root

★ Regular gate being reconfigured

Regular gate

AND-tree

Routing gates

Regular gates

Challenge 1

Challenge 2

padding

iO for log-equiv circ

~n gates

~n gates

assume: proof size ~ circuit size

Assert σ1, σ2 are valid MACs for ct1, ct2 using Kmac, Kmac

m1, m2 = Dec(ct1, ct2) using Kenc, Kenc

Compute out = g(m1, m2)

Output ct’ = Enc(out), σ’ = MAC(ct’)

ct1, σ1 ct2, σ2
1 2

21

out out

using Kenc, KMAC

Assert σ1, σ2 are valid MACs for ct1, ct2 using Kmac, Kmac

m1, m2 = Dec(ct1, ct2) using Kenc, Kenc

Compute out = g(m1, m2)

Output ct’ = Enc(out), σ’ = MAC(ct’)

ct1, σ1

1 2

21

can mix ct, σ from 2 evaluations

ct2, σ2

out out

using Kenc, KMAC

Assert π proves that (ct1, ct2, h1, h2) consistent w/ h’

Assert σ1, σ2 valid for (ct1,h1), (ct2,h2) using Kmac, Kmac

m1, m2 = Dec(ct1, ct2) using Kenc, Kenc

Compute out = g(m1, m2)

Output ct’ = Enc(out), σ’ = MAC(ct’, h’)

ct1, h1, σ1

1 2

21

out out

ct2, h2, σ2 h’,
π

using Kenc, KMAC

Assert π proves that (ct1, ct2, h1, h2) consistent w/ h’

Assert σ1, σ2 valid for (ct1,h1), (ct2,h2) using Kmac, Kmac

m1, m2 = Dec(ct1, ct2) using Kenc, Kenc

Compute out = g(m1, m2)

Output ct’ = Enc(out), σ’ = MAC(ct’, h’)

ct1, h1, σ1

1 2

21

ct2, h2, σ2 h’,
π

using Kenc, KMAC

outout

BARG
proof

SSB
hashes

Avoid BARGs
through

non-blackbox
use of SSB hash

[HW15]

x000 x001 x010 x011 x100 x101 x110 x111

x00 x01= x011

x0= x011 x1

x* = x011 Avoid BARGs
through

non-blackbox
use of SSB hash

[HW15]

Public key

x0 x1 x2 x3 x4 ∅ ∅ ∅
x0 x1 x2 ∅ ∅ ∅ ∅ ∅

Prefix consistency
proof for hx, hy

x:
y:

hx, hy

x0 x1 x2 x3 x4 ∅ ∅ ∅
x0 x1 x2 ∅ ∅ ∅ ∅ ∅

★★

★

★ ★★

 ★: 1 hash
★★: 2 hashes

Prefix consistency
proof for hx, hy

hx, hy

Compute all N
hashes & proofs

incrementally
in ~N time

every wire: hash dependent wires
every gate: prove input hash consistent with output hash

 Topological order

Quasilinear iO for TM EF

UObfM(L)

On inp length L, output iO (OTM(M))
EF

Use RAM obfuscator to obfuscate [JLL23]

Quasilinear iO for TM EF

UObfM(L)

On inp length L, output iO (OTM(M))
EF

Use RAM obfuscator to obfuscate [JLL23]

size and obf time eval time

Assume:

Also in our paper

Detailed construction and proofs

Applications to MIFE

Applications to iO for TM

eprint/2025/307

Open questions

Prove/disprove the input-len barrier

Concretely efficient iO?

Thank you !
elainershi@gmail.com

