Quasilinear Indistinguishability Obfuscation

via

Propositional Proofs of Equivalence

Elaine Shi

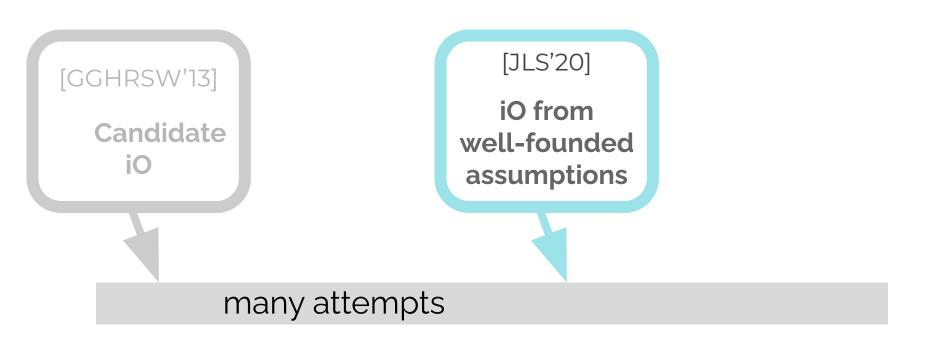
Joint work with Yaohua Ma, Chenxin Dai

Indistinguishability Obfuscation

[GGHRSW'13]

Candidate

iO



Feasibility of provably secure iO?

[GGHRSW'13]

Candidate
iO

[JLS'20]
iO from well-founded assumptions

Efficiency of iO?

Provably secure iO

- Polynomial blowup
- Input-length barrier?

Efficiency of iO?

Provably secure iO

- Polynomial blowup
- Input-length barrier?

Heuristic iO

- VBB-obf for PRF ⇒ full obf [Applebaum]
- VBB-obf + SNARG ⇒ full obf [Boneh's talk]

Efficiency of iO?

Provably secure iO

- Polynomial blowup
- Input-length barrier?

Heuristic iO

- VBB-obf for PRF ⇒ full obf [Applebaum]
- VBB-obf + SNARG ⇒ full obf [Boneh's talk]

Can we have the best of both worlds?

Provably secure iO^{EF}

Our Result

Provably secure iO^{EF}

via

Propositional proof of equivalence

Our Result

- FHE, poly (or subexp) secure
- OWF, subexp secure
- iO for $\widetilde{O}_{\lambda}(1)$ -size circuits

$$\Rightarrow$$

io , poly (or sub-exp) secure, with

$$\widetilde{O}_{\lambda}(N_{\mathrm{circ}}+N_{\mathrm{proof}})$$
 obf, and eval time

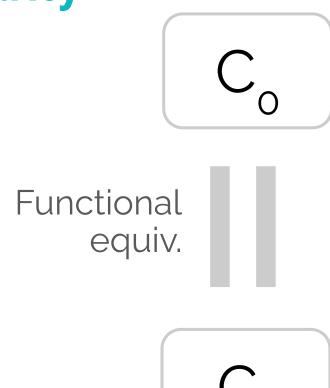
Our Result

What is

Propositional proof of equivalence

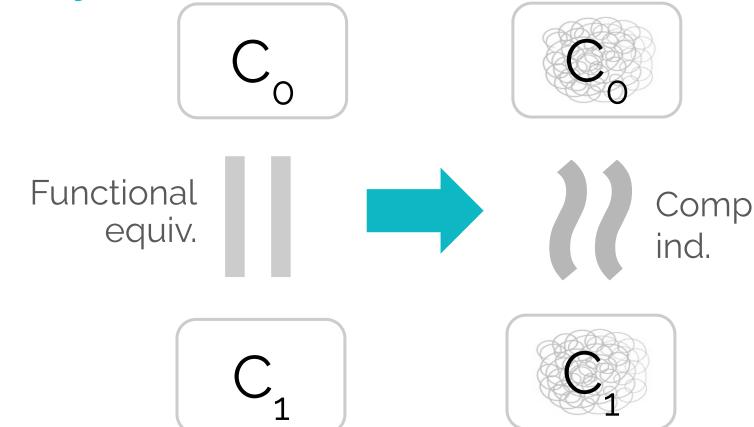
and why?

iO Security



∪₁

iO Security



R must enumerate all inputs

R must enumerate all inputs

hybrids exponential in input len

R must enumerate all inputs

⇒ # hybrids exponential in input len

⇒ sec param ≥ poly(input len)

```
R must enumerate all inputs
```

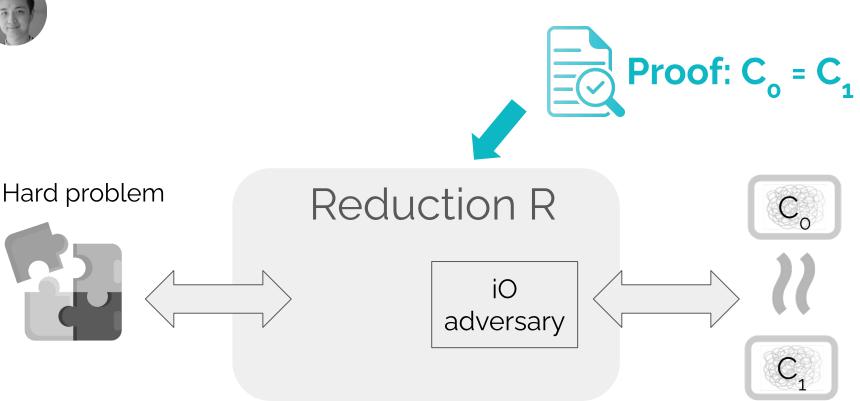
⇒ # hybrids exponential in input len

⇒ sec param ≥ poly(input len)

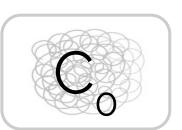
folklore:

The input length barrier

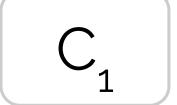
Overcoming the input-len barrier

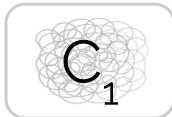


Relaxed iO security

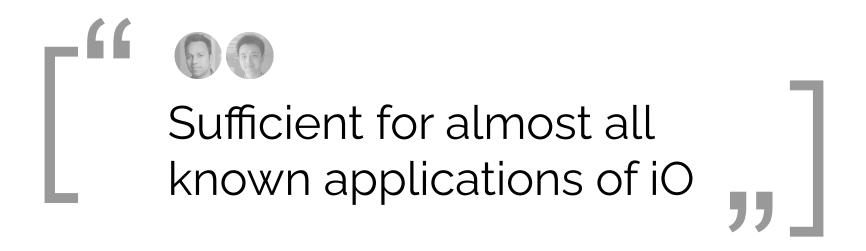


$$C_0 = C_1$$



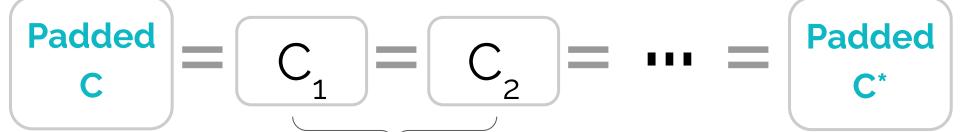


Expressive power of relaxed notion?



's blueprint

Short proof: C = C*



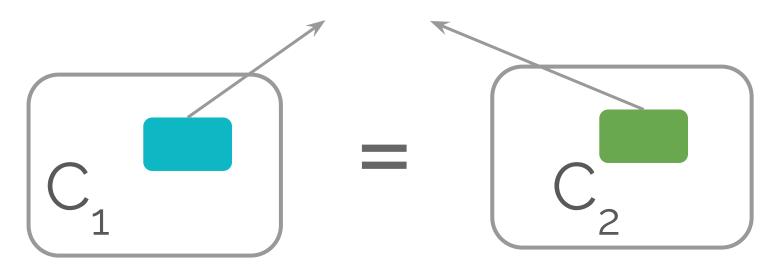
Identical except an O(log n)-sized subcircuit

's blueprint

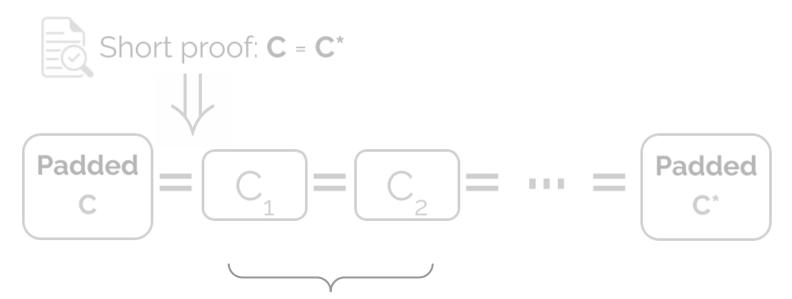
Short proof: C = C*

O(log n)-equivalent

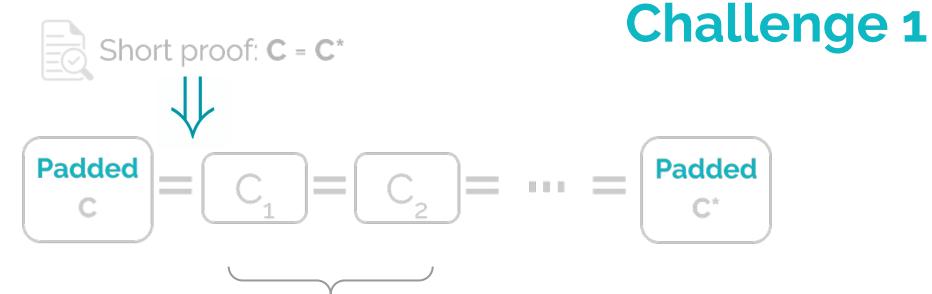
Functionally equiv, differing in impl O(log n) size



O(log n)-equivalent circuits



iO for O(log n)-equivalent circuits suffices



iO for O(log n)-equivalent circuits

Challenge 2

n² gates

n gates

≥n⁴ eval time

assume: BARG with ideal efficiency (not known)

Challenge 1 padding

iO for log-equiv circ

Challenge 2

Our approach

n gates eval time

assume: proof size ~ circuit size

Challenge 1 padding

iO for log-equiv circ

Challenge 2

Challenge 1

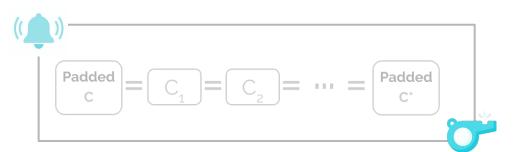
padding

Challenge 1

padding

Padded circuit is a universal circuit

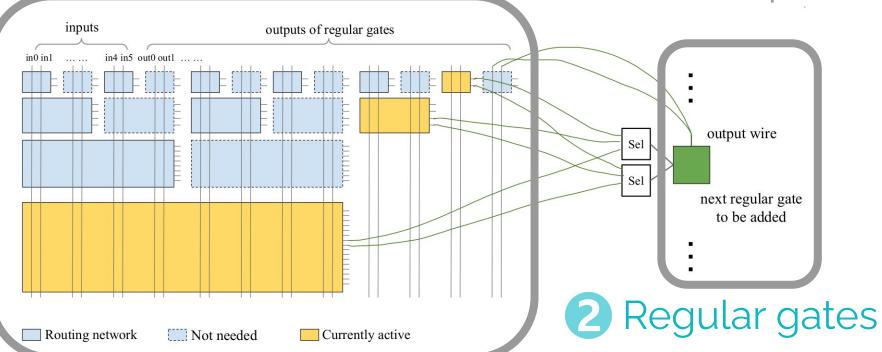
But with



1 Routing gates

Challenge 1

padding



Challenge 2 iO for log-equiv circ

- Gate by gate obfuscation

Mix-and-match attack e.g., use values from a different eval

Challenge 2 iO for log-equiv circ

each wire carries a BARG provenance proof, O(n) time per wire

Ours

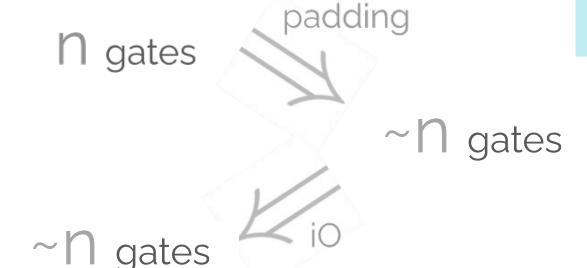
achieve the same but w/o BARG, ~O(1) time per wire

Applications of our quasilinear iO

Multi-input functional encryption with quasilinear efficiency

iO for TM with quasilinear efficiency

assume: short proofs of equivalence

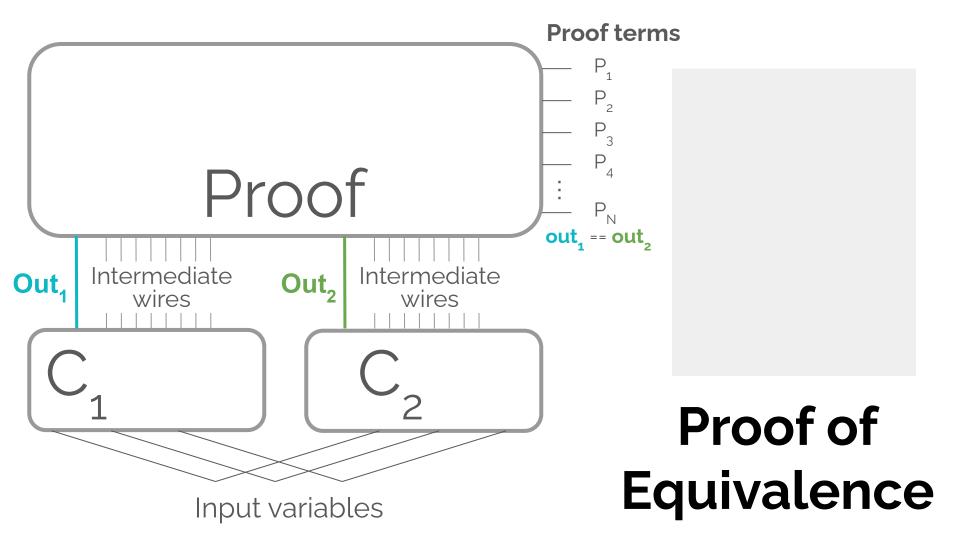


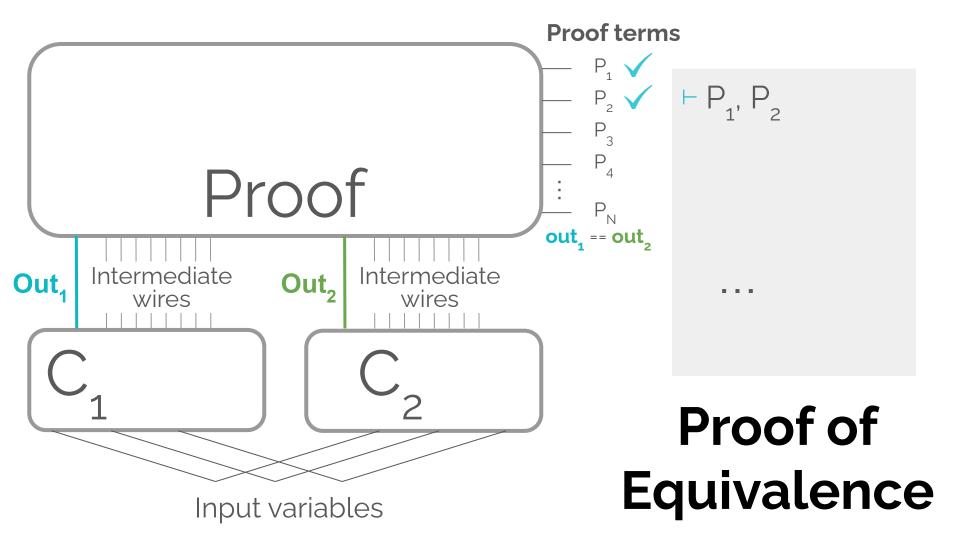
Challenge 1 padding

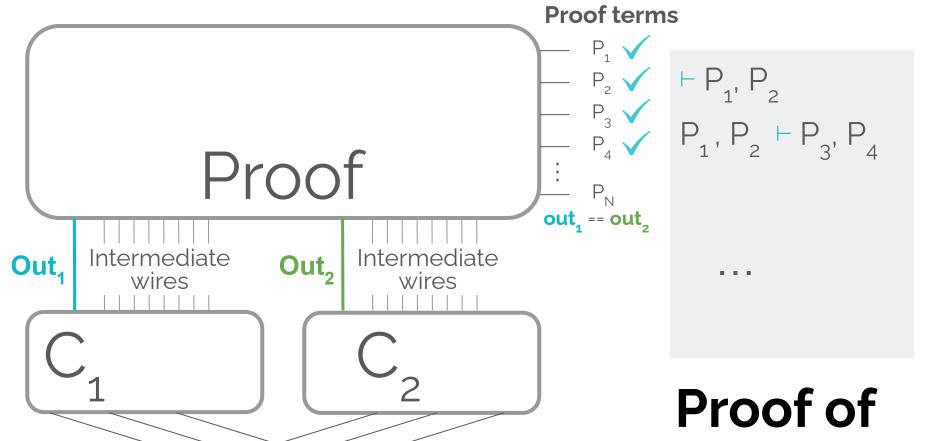
iO for log-equiv circ

Challenge 2

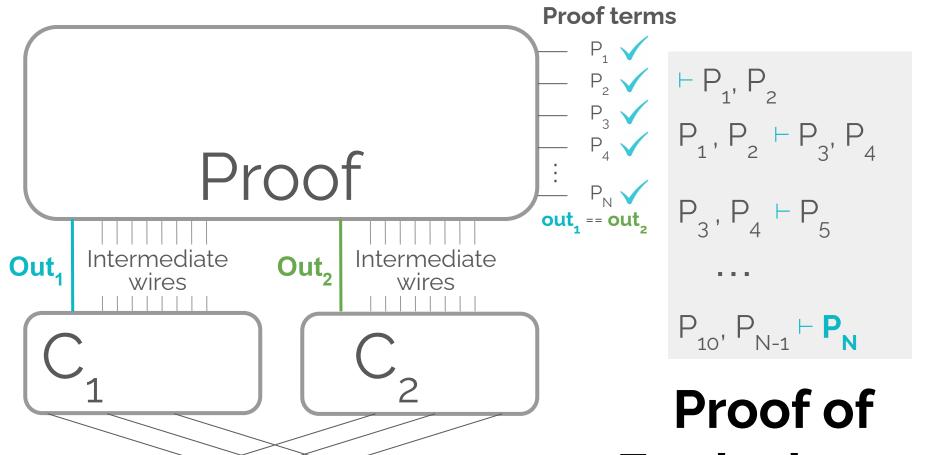
assume: proof size ~ circuit size







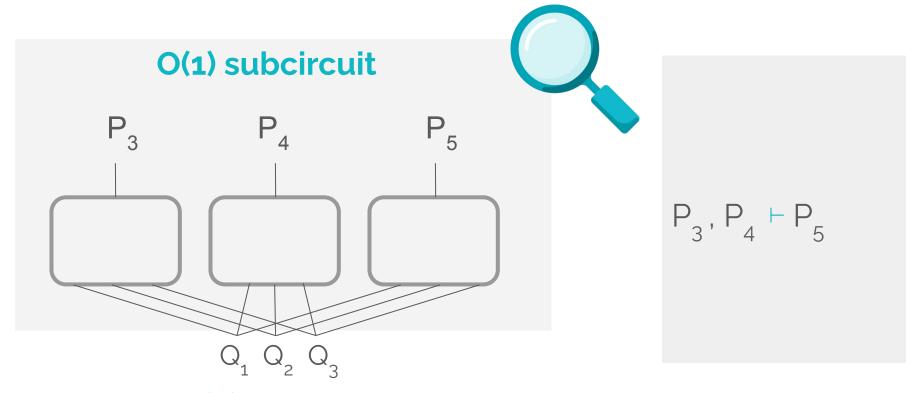
Input variables Equivalence



Input variables Equivalence

Axioms
$$\begin{cases} \vdash P \rightarrow (Q \rightarrow P) \\ \vdash \neg \neg P \rightarrow P \\ \dots \end{cases}$$
Modus
$$P, P \rightarrow Q \vdash Q$$
Ponens

Example of a Proof Line



O(1) variables

Each proof line: O(1)-sized subcircuit

Example: # Short Equivalence Proof

R # img(PRG)

```
// do something
```

// do special

Else

// proceed normally

// do something

If PRG(inp) = R then

// do special

Else

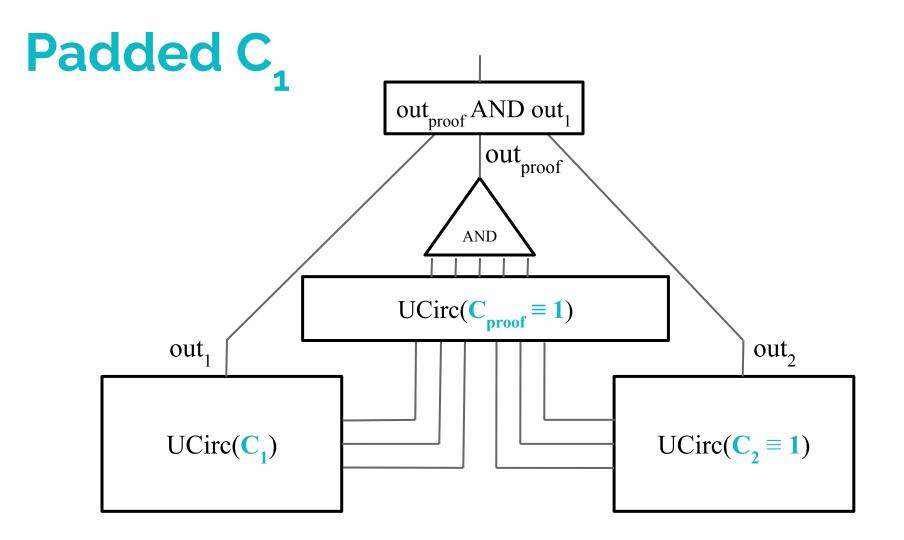
// proceed normally

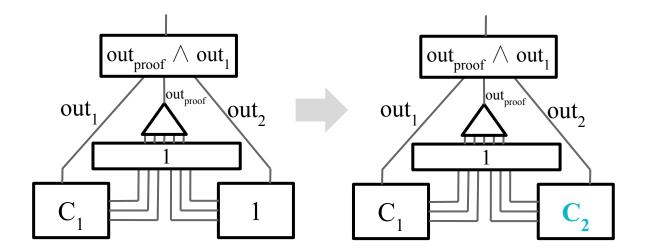
Example: Image: Image:

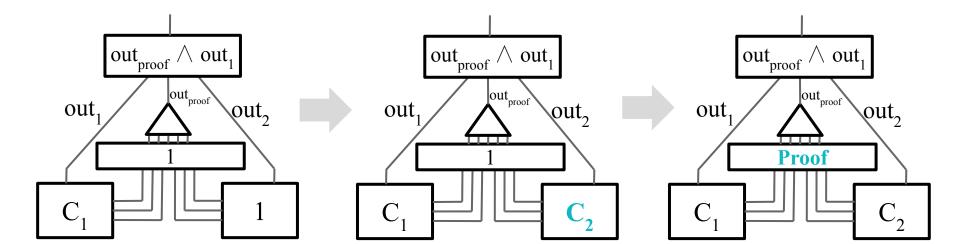
C: encryption of 1

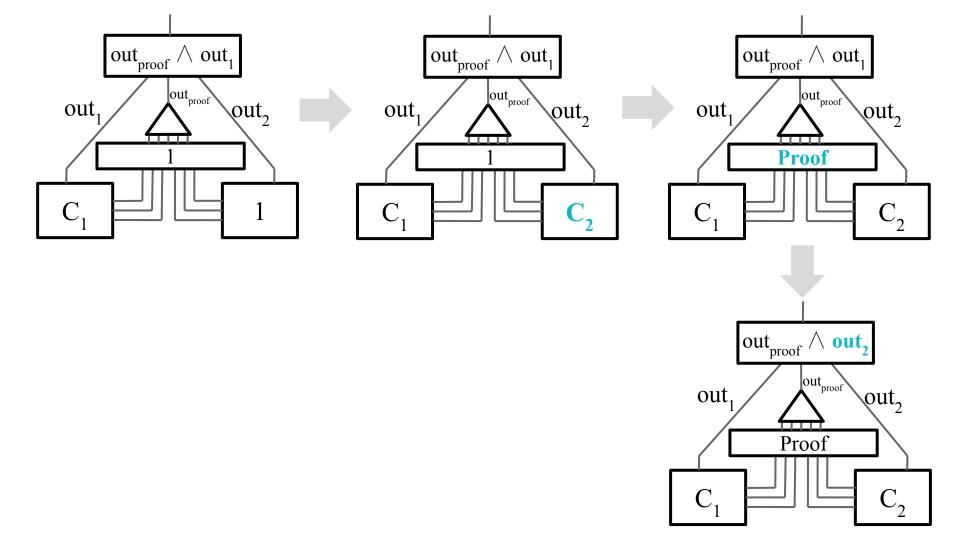
```
// do something
                                     // do something
If Enc(o, r) = C then
                                     If Enc(o, r) = C then
   // do special
                                        <del>// do special</del>
Else
   // proceed normally
                                        // proceed normally
```

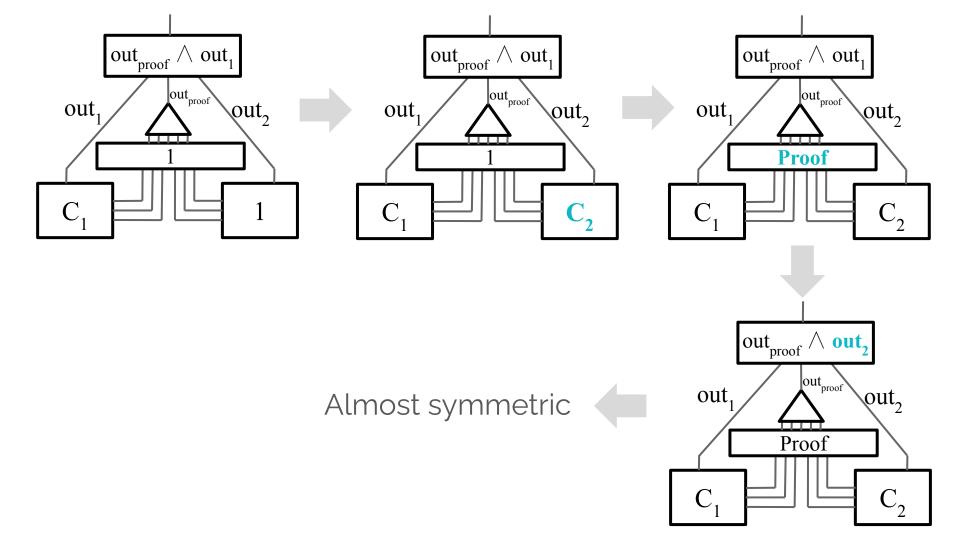

PKE w/ short proof of correct decryption

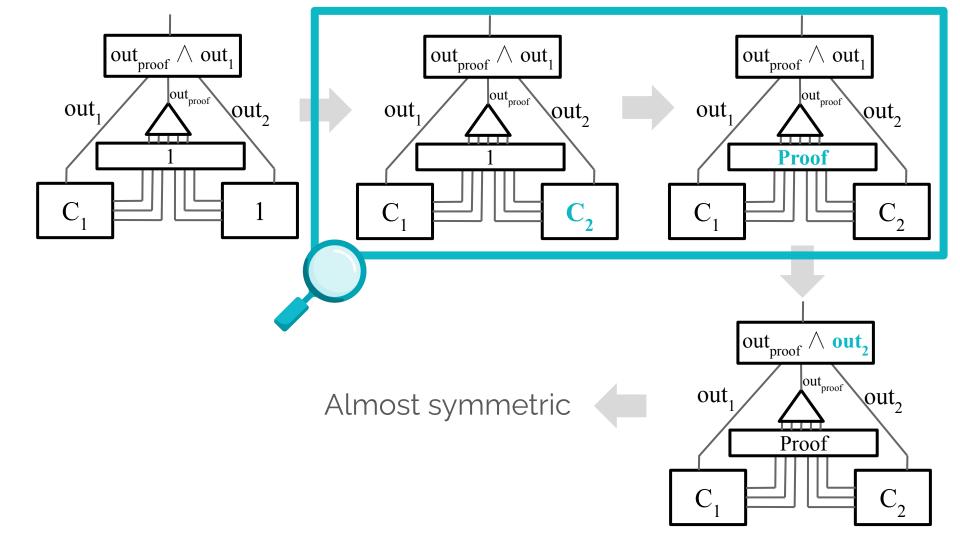


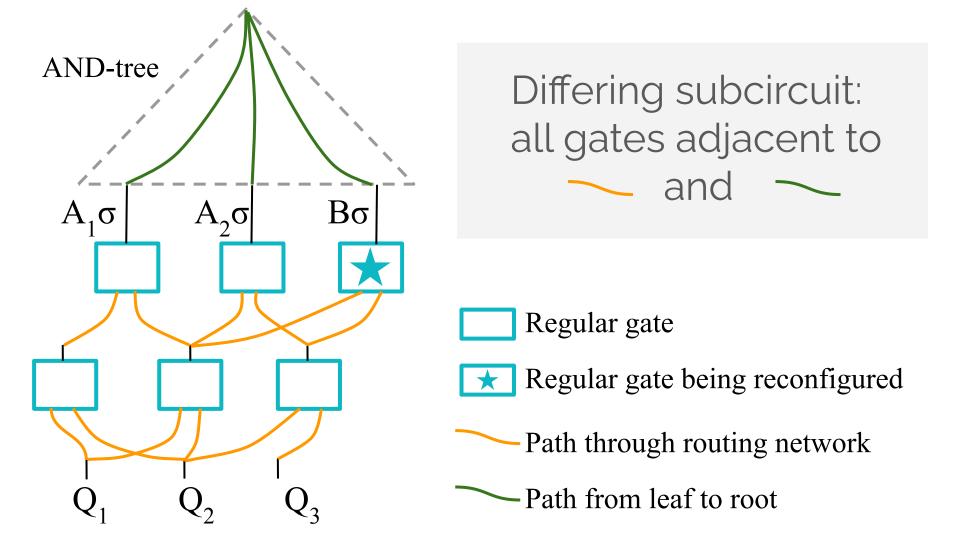




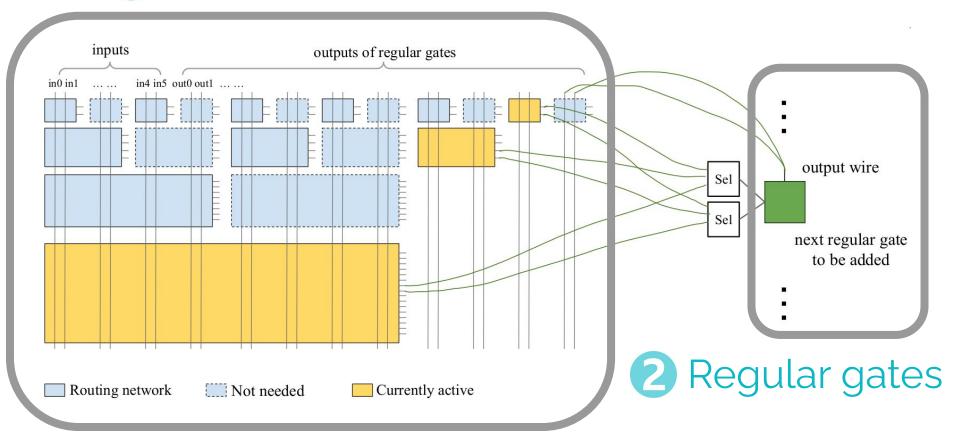








1 Routing gates



n gates ~n gates

Challenge 1 padding

iO for log-equiv circ

Challenge 2

assume: proof size ~ circuit size

~ n gates

 ct_1, σ_1

 ct_2 , σ_2

Assert σ_1 , σ_2 are valid MACs for ct_1 , ct_2 using k_{mac} , k_{mac}

 m_1 , m_2 = Dec(ct₁, ct₂) using K_{enc}^1 , K_{enc}^2

Compute out = $g(m_1, m_2)$

Output ct' = Enc(out), σ' = MAC(ct') using K_{enc}^{out} , K_{MAC}^{out}

can mix ct, of from 2 evaluations

$$ct_1, \sigma_1$$
 ct_2, σ_2

Assert σ_1 , σ_2 are valid MACs for ct_1 , ct_2 using k_{mac} , k_{mac}

$$m_1$$
, m_2 = Dec(ct_1 , ct_2) using K_{enc}^1 , K_{enc}^2

Compute out = $g(m_1, m_2)$

Output ct' = Enc(out),
$$\sigma'$$
 = MAC(ct') using $K_{enc'}^{out}$, K_{MAC}^{out}

$$ct_1, h_1, \sigma_1$$
 ct_2, h_2, σ_2 $h',$

Assert π proves that (ct₁, ct₂, h₁, h₂) consistent w/ h'

Assert σ_1 , σ_2 valid for (ct_1,h_1) , (ct_2,h_2) using k_{mac} , k_{mac}

$$m_1$$
, m_2 = Dec(ct₁, ct₂) using K_{enc}^1 , K_{enc}^2

Compute out = g(m₁, m₂)

Output ct' = Enc(out),
$$\sigma'$$
 = MAC(ct', h') using K_{enc}^{out} , K_{MAC}^{out}

 $\operatorname{ct}_1, h_1, \sigma_1 \qquad \operatorname{ct}_2, h_2, \sigma_2 \qquad h',$

Assert Toroves that (ct, ct, h, h) consistent w/h'

SSB hashes

h₁), (ct₂

g K'_{enc}

BARG proof

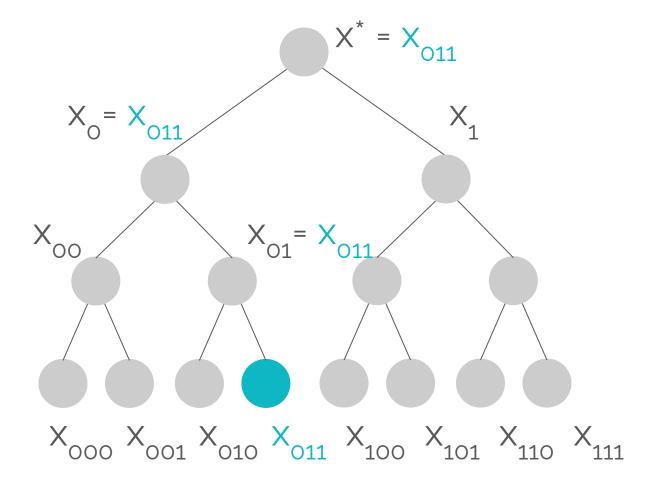
Compute out = g(m₁, m₂)

Output ct' = Enc(out), σ' = MAC(ct', h') using K_{enc}^{out} , K_{MAC}^{out}

Avoid BARGs

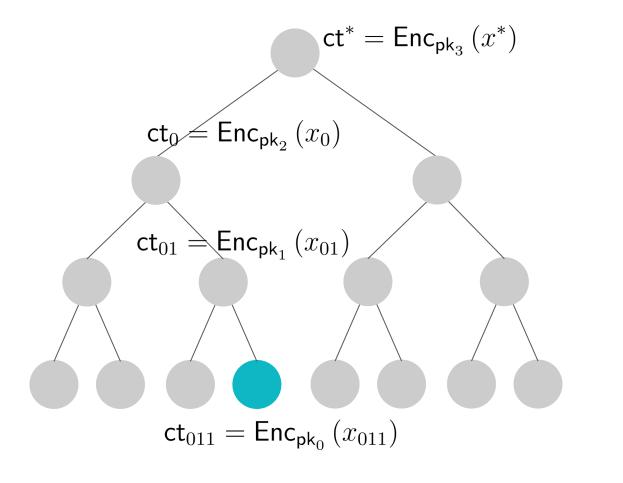
through

non-blackbox use of SSB hash



SSB hash

[HW15]



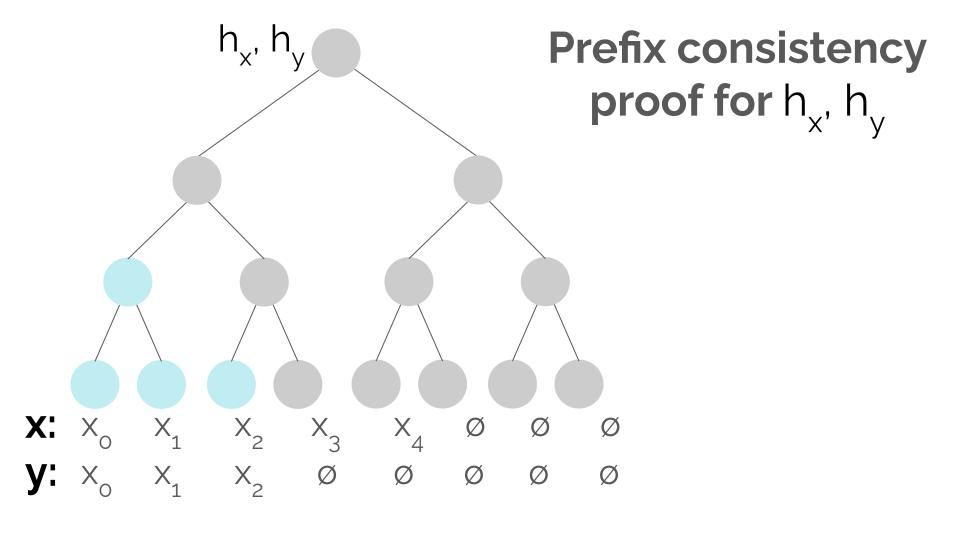
Public key

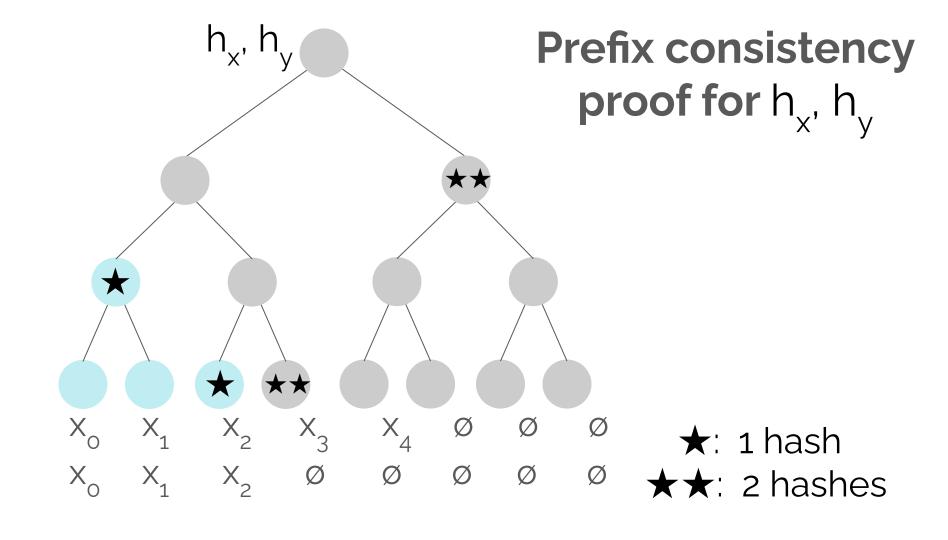
 $\mathsf{pk}_3, \; \mathsf{Enc}_{\mathsf{pk}_3}\left(\mathsf{sk}_2,\mathsf{idx}_3\right)$

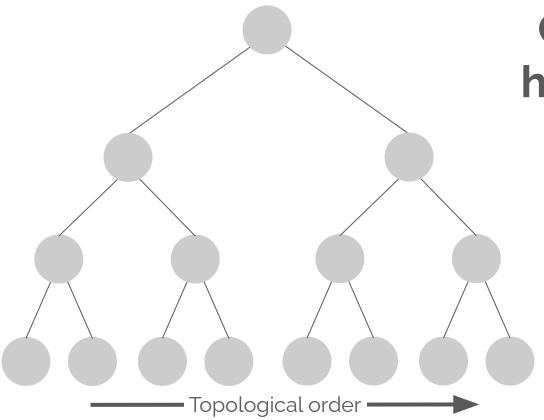
 $\mathsf{pk}_2,\ \mathsf{Enc}_{\mathsf{pk}_2}\left(\mathsf{sk}_1,\mathsf{idx}_2\right)$

 $\mathsf{pk}_1, \ \mathsf{Enc}_{\mathsf{pk}_1}\left(\mathsf{sk}_0,\mathsf{idx}_1\right)$

 pk_0







Compute all N hashes & proofs incrementally in ~N time

every wire: hash dependent wires every gate: prove input hash consistent with output hash

Quasilinear io for TM

Use RAM obfuscator to obfuscate

[JLL23]

UObf^M(L)

On inp length L, output io (OTM(M))

Quasilinear io for TM

Use RAM obfuscator to obfuscate [JLL23]

UObf^M(L)

On inp length L, output io (OTM(M))

$$O_{\lambda}(1)$$
 size and obf time

$$\widetilde{O}_{\lambda}(T+N_{\mathrm{proof}})$$
 eval time

Assume: $|M| \leq \widetilde{O}_{\lambda}(1)$

Also in our paper

eprint/2025/307

Detailed construction and proofs

Applications to MIFE

Applications to iO for TM

Open questions

Prove/disprove the input-len barrier

Concretely efficient iO?

Thank you!

elainershi@gmail.com