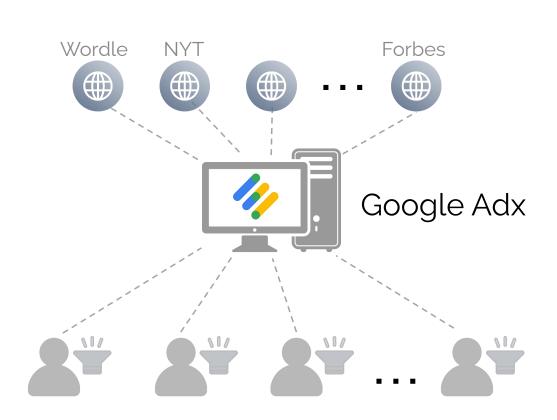


Foundations of

Platform-Assisted Auctions

Elaine Shi Carnegie Mellon University

Joint work with Hao Chung and Ke Wu

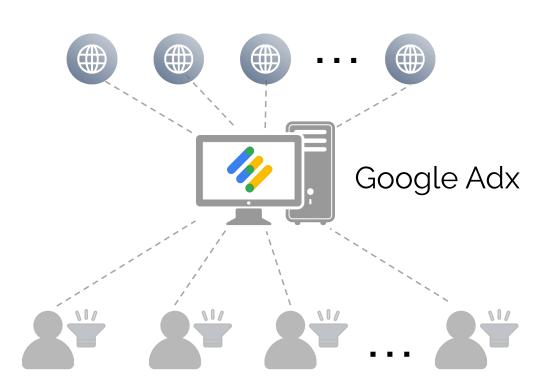


Platform-assisted auctions

Sellers (publishers)

Platform

Buyers (advertisers)


Platform gets remunerated for value-added services:

>> rendezvous, search, recommender system, payment processing

Sellers (publishers)

Platform

Buyers (advertisers)

Justice Department Sues Google for Monopolizing Digital Advertising Technologies

Google accused of

- withholding seller revenue
- injecting bids to raise price

.

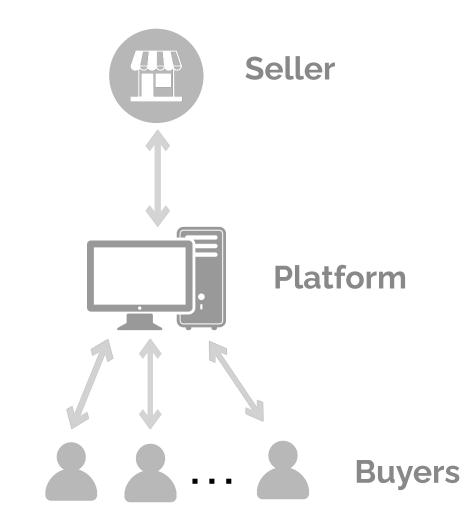
New theory of anti-trust auction design

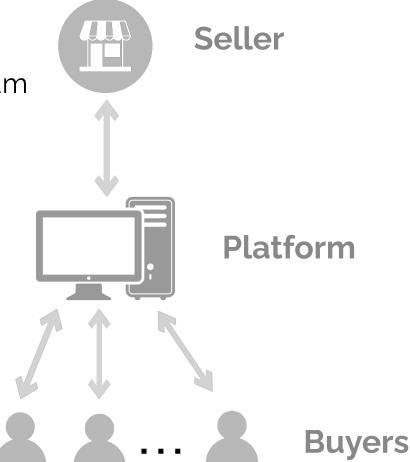
New theory of anti-trust auction design

Auction literature

- Trusted auctioneer
- Assume no collusion
- Permissioned

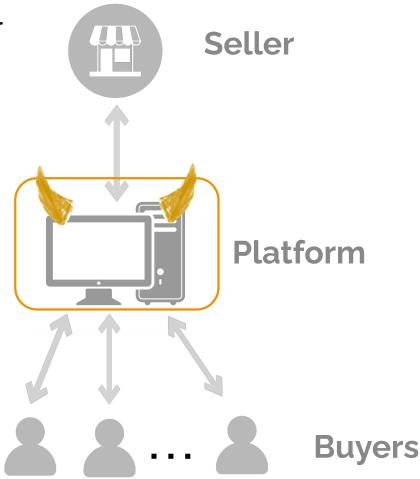
New theory of anti-trust auction design


Auction literature


Reality

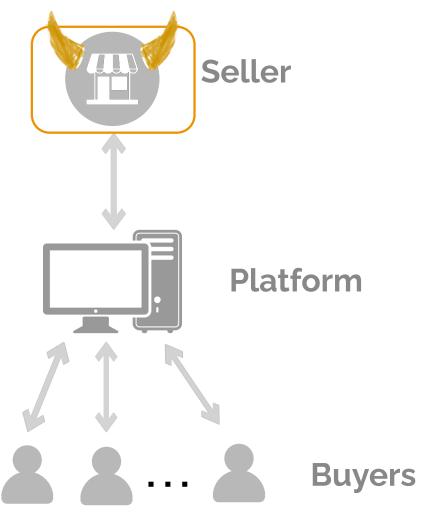
- Trusted auctioneer
- Assume no collusion
- Permissioned

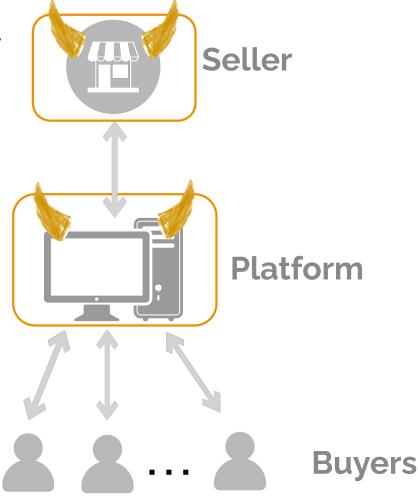
- Trustless environment
- Collusion made easy
- Permissionless


> Honest is best response/equilibrium

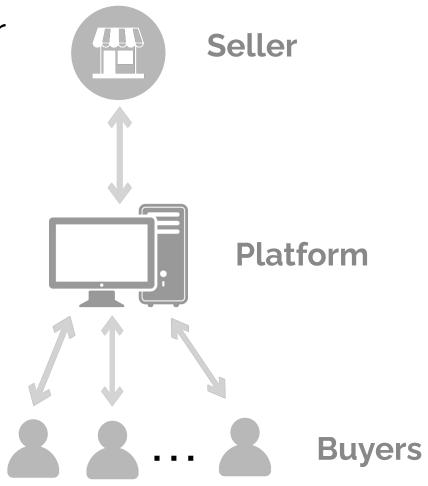
a buyer

Seller **Platform Buyers**


- a buyer
- the platform


- a buyer
- the platform
- platform-buyer coalition

Seller **Platform Buyers**


- a buyer
- the platform
- platform-buyer coalition
- the seller

- a buyer
- the platform
- platform-buyer coalition
- the seller
- platform-seller coalition

- a buyer
- the platform
- platform-buyer coalition
- the seller
- platform-seller coalition

Overbid, underbid

Fake bids

Arbitrarily deviate from protocol

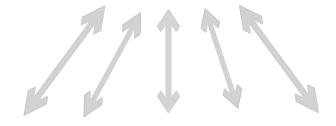
Strategy space

Overbid, underbid

Fake bids

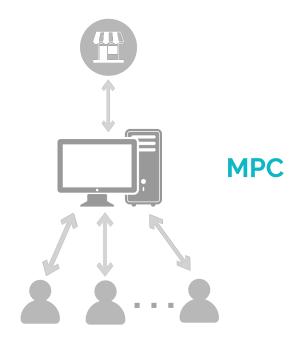
Arbitrarily deviate from protocol

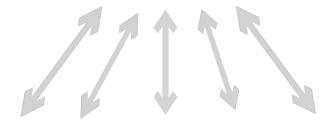
Assumption:


- ✓ cares about reputation
- ✓ adopts only safe strategies that do not risk detection

Why not just use MPC?

Ideal world





Real world

Ideal world

- Allocate to top bidder
- Winner pays 2nd price
- Platform gets 10% of revenue, seller gets the rest

benefit from overbidding

- Allocate to top bidder
- Winner pays 2nd price
- Platform gets 10% of revenue, seller gets the rest

Example: 2 buyers

- Allocate to top bidder
- Winner pays 2nd price
- Platform gets 10% of revenue, seller gets the rest

Example: 2 buyers

value = 5

value = 8

- Allocate to top bidder
- Winner pays 2nd price
- Platform gets 10% of revenue, seller gets the rest

value = 5

value = 8

should bid 8 - E

- Allocate to top bidder
- Winner pays 2nd price
- Platform gets 10% of revenue, seller gets the rest

Example: 2 buyers

value = 5

value $\stackrel{\$}{\leftarrow}$ [0, 10]

- Allocate to top bidder
- Winner pays 2nd price
- Platform gets 10% of revenue, seller gets the rest

Example: 2 buyers

value = 5

value $\stackrel{\$}{\leftarrow}$ [0, 10]

should bid 5.45

- Allocate to top bidder
- Winner pays 2nd price
- Platform gets 10% of revenue, seller gets the rest

Overbid, underbid

Fake bids

Arbitrarily deviate from protocol

MPC dos and don'ts

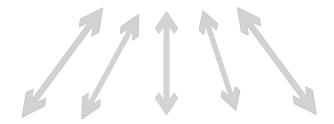
Can we have a dream platform-assisted auction?

Crypto

Mechanism design

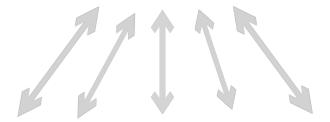
"Decentralized mechanism design"

- 3 Utility-dominated emulation
 - 2 Fundamental limitations


Inefficient MPC-based auction

Recall the strawman MPC protocol

Ideal world



- Allocate to top k bidders
- Sale price = (k+1)-st price
- Platform gets 10%
- Everyone learns their private outcome

The fix

Ideal world

2nd price with reserve R

Allocate to top k bidders
 who bid ≥R

1

- Sale price = (k+1)-st price or
 R, whichever greater
- Platform gets nothing

2

Broadcast final price to all

3

IC for:

2nd price with reserve R

- Allocate to top k bidders
 who bid ≥R
- Sale price = (k+1)-st price or
 R, whichever greater
- Platform gets nothing
- Broadcast final price to all

IC for:

2nd price with reserve R

- Allocate to top k bidders
 who bid ≥R
- Sale price = (k+1)-st price or
 R, whichever greater
- Platform gets nothing
- Broadcast final price to all

IC for:

- ✓ buyer ✓ platform
- √ platform-buyer coalition

2nd price with reserve R

- Allocate to top k bidders
 who bid ≥R
- Sale price = (k+1)-st price or
 R, whichever greater
- Platform gets nothing
- Broadcast final price to all

- ✓ buyer ✓ platform
- √ platform-buyer coalition

What can the platform do that the buyer cannot on its own?

- Allocate to top k bidders
 who bid ≥R
- Sale price = (k+1)-st price or
 R, whichever greater
- Platform gets nothing
- Broadcast final price to all

Broadcast prevents the "partitioned world" attack



10

1 item, reserve = 0

Broadcast prevents the "partitioned world" attack

1 item, reserve = 0

- ✓ buyer ✓ platform
- ✓ platform-buyer coalition

Bayesian IC for:

- ✓ seller
- √ platform-seller coalition

2nd price with reserve R

- Allocate to top k bidders
 who bid ≥R
- Sale price = (k+1)-st price or
 R, whichever greater
- Platform gets nothing
- Broadcast final price to all

assume: suitable reserve

- ✓ buyer ✓ platform
- ✓ platform-buyer coalition

Bayesian IC for:

- ✓ seller
- √ platform-seller coalition
- Bake optimal price floor into mechanism itself

assume: suitable reserve

- Allocate to top k bidders
 who bid ≥R
- Sale price = (k+1)-st price or
 R, whichever greater
- Platform gets nothing
- Broadcast final price to all

- ✓ buyer ✓ platform
- ✓ platform-buyer coalition

Bayesian IC for:

- ✓ seller
- √ platform-seller coalition

Revenue optimal!

assume: suitable reserve

- Allocate to top k bidders
 who bid ≥R
- Sale price = (k+1)-st price or
 R, whichever greater
- Platform gets nothing
- Broadcast final price to all

Privacy of MPC is important!

Bayesian IC for:

- ✓ seller
- √ platform-seller coalition

Revenue optimal!

assume: suitable reserve

- Allocate to top k bidders
 who bid ≥R
- Sale price = (k+1)-st price or
 R, whichever greater
- Platform gets nothing
- Broadcast final price to all

- ✓ buyer ✓ platform
- √ platform-buyer coalition

Bayesian IC for:

- ✓ seller
- √ platform-seller coalition

Revenue optimal!

assume: suitable reserve

Summary

- Allocate to top k bidders
 who bid ≥R
- Sale price = (k+1)-st price or
 R, whichever greater
- Platform gets nothing
- Broadcast final price to all

Limitations

- Allocate to top k bidders
 who bid ≥R
- Sale price = (k+1)-st price or
 R, whichever greater
- Platform gets nothing
- Broadcast final price to all

?

Limitations

- Allocate to top k bidders
 who bid ≥R
- Sale price = (k+1)-st price or
 R, whichever greater
- Platform gets nothing
- Broadcast final price to all

?

Avoid the broadcast

Limitations

- Allocate to top k bidderswho bid ≥R
- Sale price = (k+1)-st price or
 R, whichever greater
- Platform gets nothing
- Broadcast final price to all

?

Avoid the broadcast

Improve efficiency

Limitations

- Allocate to top k bidders
 who bid ≥R
- Sale price = (k+1)-st price or
 R, whichever greater
- Platform gets nothing
- Broadcast final price to all

Avoid the broadcast

Improve efficiency

- Allocate to top k bidders
 who bid ≥R
- Sale price = (k+1)-st price or
 R, whichever greater
- Platform gets nothing
- Broadcast final price to all

Avoid the broadcast

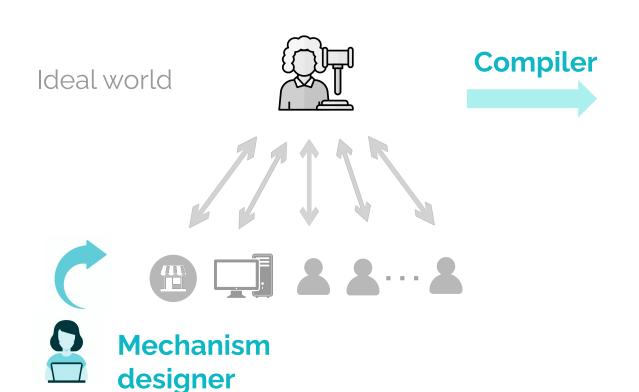
Improve efficiency

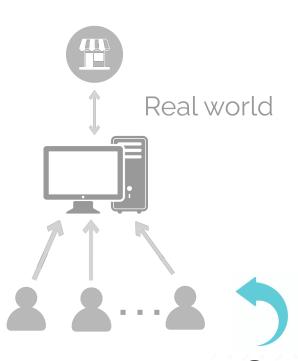
Utility dominated emulation

- Allocate to top k bidders
 who bid ≥R
- Sale price = (k+1)-st price or
 R, whichever greater
- Platform gets nothing
- Broadcast final price to all

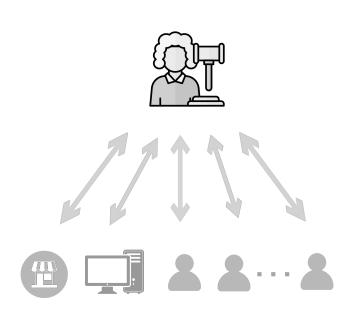
Generic MPC incurs n² cost!

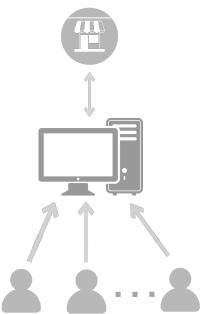
Generic MPC incurs n² cost!


- Each player has a different output
- indistinguishability obfuscation

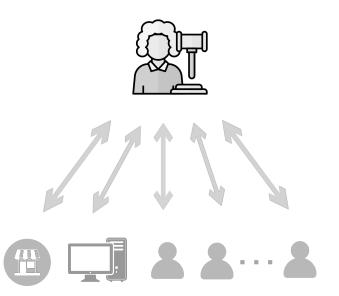

```
communication \Rightarrow \sim O(n)
```

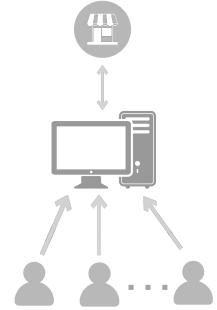
compute: still n2


Design paradigm of MPC



Can we improve the **efficiency** but preserve the **design paradigm?**

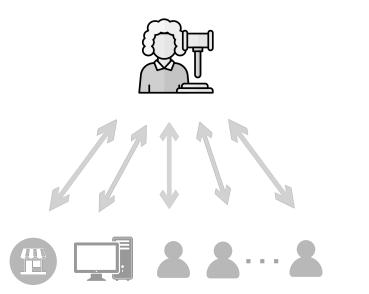


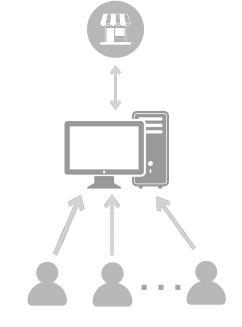


Utility-dominated emulation:

Any real-world strategy is utility-dominated by

an ideal-world strategy

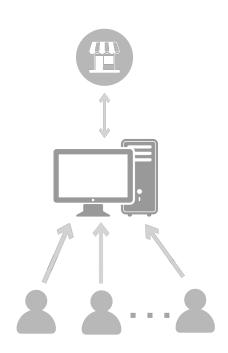




Utility-dominated emulation:

Any real-world strategy is utility-dominated by

an **ideal-world** strategy



Thm: Ideal is IC + util-dominated emulation \Longrightarrow Real is IC

O(n) costO(1) roundsO(1) broadcast

broadcast necessary due to permissionless

See our paper for more

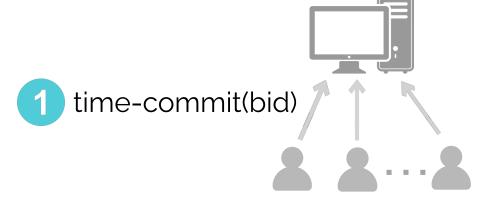
- More impossibilities & structural characterizations
- Efficient cryptography construction using ZK
- Computationally sound defn of "safe deviation"
- Proofs

Decentralized mechanism design: a goldmine of open questions

- Biggest challenge for blockchains
- Heuristic protocols used in practice
- What's the right game-theoretic notion?
- Crypto meets mechanism design

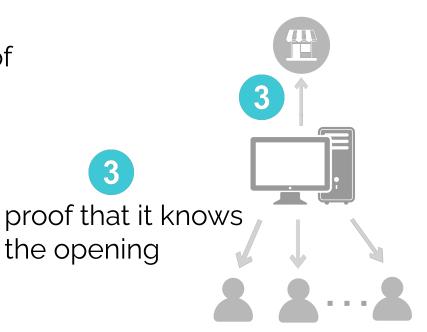
Thank you!

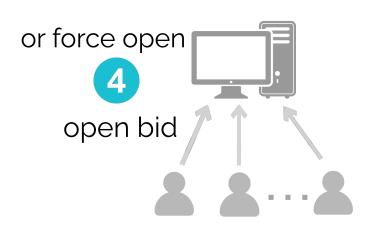
elainershi@gmail.com



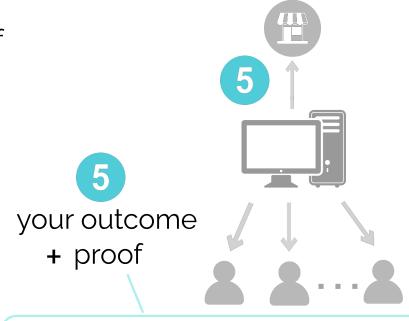
The protocol

Buyers send timed commitments of bids

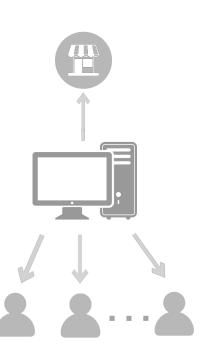

- Buyers send timed commitments of bids
- Platform broadcasts hash of commitments



- Buyers send timed commitments of bids
- Platform broadcasts hash of commitments
- Platform proves it knows opening of hash



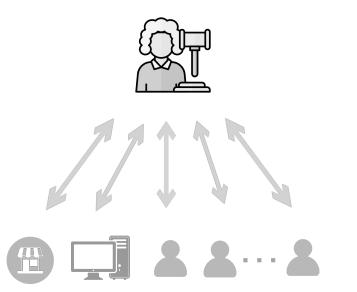
- Buyers send timed commitments of bids
- Platform broadcasts hash of commitments
- Platform proves it knows opening of hash
- 4 Open or force-open bids

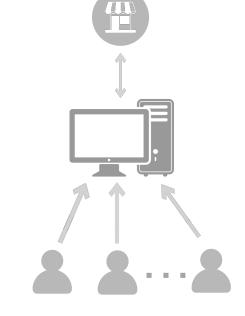

- Buyers send timed commitments of bids
- Platform broadcasts hash of commitments
- Platform proves it knows opening of hash
- 4 Open or force-open bids
- Platform sends everyone its outcome + proof

- outcome correct w.r.t. hash
- buyer's bid is included once

- Buyers send timed commitments of bids
- Platform broadcasts hash of commitments
- Platform proves it knows opening of hash
- 4 Open or force-open bids
- Platform sends everyone its outcome + proof

Thank you!


elainershi@gmail.com



Utility-dominated emulation:

Any real-world strategy is utility-dominated by

an ideal-world strategy

Strategic util in Real ≤ Strategic util in Ideal ≤ Honest util in Ideal = Honest util in Real